TY - GEN A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard James A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1301 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577442 SN - 1866-8372 IS - 1301 ER - TY - JOUR A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard James A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy JF - Nature Communications N2 - The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-021-27908-y SN - 2041-1723 VL - 13 PB - Springer Nature CY - Berlin ER - TY - JOUR A1 - Bouakline, Foudhil A1 - Saalfrank, Peter T1 - Seemingly asymmetric atom-localized electronic densities following laser-dissociation of homonuclear diatomics JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry N2 - Recent experiments on laser-dissociation of aligned homonuclear diatomic molecules show an asymmetric forward-backward (spatial) electron-localization along the laser polarization axis. Most theoretical models attribute this asymmetry to interference effects between gerade and ungerade vibronic states. Presumably due to alignment, these models neglect molecular rotations and hence infer an asymmetric (post-dissociation) charge distribution over the two identical nuclei. In this paper, we question the equivalence that is made between spatial electron-localization, observed in experiments, and atomic electron-localization, alluded by these theoretical models. We show that (seeming) agreement between these models and experiments is due to an unfortunate omission of nuclear permutation symmetry, i.e., quantum statistics. Enforcement of the latter requires mandatory inclusion of the molecular rotational degree of freedom, even for perfectly aligned molecules. Unlike previous interpretations, we ascribe spatial electron-localization to the laser creation of a rovibronic wavepacket that involves field-free molecular eigenstates with opposite space-inversion symmetry i.e., even and odd parity. Space-inversion symmetry breaking would then lead to an asymmetric distribution of the (space-fixed) electronic density over the forward and backward hemisphere. However, owing to the simultaneous coexistence of two indistinguishable molecular orientational isomers, our analytical and computational results show that the post-dissociation electronic density along a specified space-fixed axis is equally shared between the two identical nuclei-a result that is in perfect accordance with the principle of the indistinguishability of identical particles. Published under an exclusive license by AIP Publishing. Y1 - 2021 U6 - https://doi.org/10.1063/5.0049710 SN - 0021-9606 SN - 1089-7690 VL - 154 IS - 23 PB - American Institute of Physics CY - Melville ER -