TY - JOUR A1 - Stete, Felix A1 - Schossau, Phillip A1 - Bargheer, Matias A1 - Koopman, Wouter-Willem Adriaan T1 - Size-Dependent coupling of Hybrid Core-Shell Nanorods BT - Toward Single-Emitter Strong-Coupling JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Owing to their ability of concentrating electromagnetic fields to subwavelength mode volumes, plasmonic nanoparticles foster extremely high light-matter coupling strengths reaching far into the strong-coupling regime of light matter interaction. In this article, we present an experimental investigation on the dependence of coupling strength on the geometrical size of the nanoparticle. The coupling strength for differently sized hybrid plasmon-core exciton-shell nanorods was extracted from the typical resonance anticrossing of these systems, obtained by controlled modification of the environment permittivity using layer-by-layer deposition of polyelectrolytes. The observed size dependence of the coupling strength can be explained by a simple model approximating the electromagnetic mode volume by the geometrical volume of the particle. On the basis of this model, the coupling strength for particles of arbitrary size can be predicted, including the particle size necessary to support single-emitter strong coupling. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b04204 SN - 1932-7447 VL - 122 IS - 31 SP - 17976 EP - 17982 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Erler, Alexander A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Grothusheitkamp, Daniela A1 - Kunz, Thomas A1 - Methner, Frank-Jürgen T1 - Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry JF - Journal of mass spectrometr N2 - The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on-site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)-mass spectrometry (MS). The APCI source utilizes soft X-radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on-site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI-MS. Accordingly, more than 90% of the volatile metabolites found by APCI-MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC-IMS. KW - APCI KW - fungus KW - gas chromatography KW - ion mobility spectrometry KW - mass KW - spectrometry KW - mold KW - soft X-ray Y1 - 2020 U6 - https://doi.org/10.1002/jms.4501 SN - 1076-5174 SN - 1096-9888 VL - 55 IS - 5 SP - 1 EP - 10 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Pranav, Manasi A1 - Hultzsch, Thomas A1 - Musiienko, Artem A1 - Sun, Bowen A1 - Shukla, Atul A1 - Jaiser, Frank A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Anticorrelated photoluminescence and free charge generation proves field-assisted exciton dissociation in low-offset PM6:Y5 organic solar cells JF - APL materials : high impact open access journal in functional materials science N2 - Understanding the origin of inefficient photocurrent generation in organic solar cells with low energy offset remains key to realizing high-performance donor-acceptor systems. Here, we probe the origin of field-dependent free-charge generation and photoluminescence in wnon-fullereneacceptor (NFA)-based organic solar cells using the polymer PM6 and the NFA Y5-a non-halogenated sibling to Y6, with a smaller energetic offset to PM6. By performing time-delayed collection field (TDCF) measurements on a variety of samples with different electron transport layers and active layer thickness, we show that the fill factor and photocurrent are limited by field-dependent free charge generation in the bulk of the blend. We also introduce a new method of TDCF called m-TDCF to prove the absence of artifacts from non-geminate recombination of photogenerated and dark charge carriers near the electrodes. We then correlate free charge generation with steady-state photoluminescence intensity and find perfect anticorrelation between these two properties. Through this, we conclude that photocurrent generation in this low-offset system is entirely controlled by the field-dependent dissociation of local excitons into charge-transfer states. (c) 2023 Author(s). Y1 - 2023 U6 - https://doi.org/10.1063/5.0151580 SN - 2166-532X VL - 11 IS - 6 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Hovhannisyan, Karen V. A1 - Nemati, Somayyeh A1 - Henkel, Carsten A1 - Anders, Janet T1 - Long-time equilibration can determine transient thermality JF - PRX Quantum N2 - When two initially thermal many-body systems start to interact strongly, their transient states quickly become non-Gibbsian, even if the systems eventually equilibrate. To see beyond this apparent lack of structure during the transient regime, we use a refined notion of thermality, which we call g-local. A system is g-locally thermal if the states of all its small subsystems are marginals of global thermal states. We numerically demonstrate for two harmonic lattices that whenever the total system equilibrates in the long run, each lattice remains g-locally thermal at all times, including the transient regime. This is true even when the lattices have long-range interactions within them. In all cases, we find that the equilibrium is described by the generalized Gibbs ensemble, with three-dimensional lattices requiring special treatment due to their extended set of conserved charges. We compare our findings with the well-known two-temperature model. While its standard form is not valid beyond weak coupling, we show that at strong coupling it can be partially salvaged by adopting the concept of a g-local temperature. Y1 - 2023 U6 - https://doi.org/10.1103/PRXQuantum.4.030321 SN - 2691-3399 VL - 4 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Chen, Junchao A1 - Lange, Thomas A1 - Andjelkovic, Milos A1 - Simevski, Aleksandar A1 - Krstić, Miloš T1 - Prediction of solar particle events with SRAM-based soft error rate monitor and supervised machine learning JF - Microelectronics reliability N2 - This work introduces an embedded approach for the prediction of Solar Particle Events (SPEs) in space applications by combining the real-time Soft Error Rate (SER) measurement with SRAM-based detector and the offline trained machine learning model. The proposed approach is intended for the self-adaptive fault-tolerant multiprocessing systems employed in space applications. With respect to the state-of-the-art, our solution allows for predicting the SER 1 h in advance and fine-grained hourly tracking of SER variations during SPEs as well as under normal conditions. Therefore, the target system can activate the appropriate mechanisms for radiation hardening before the onset of high radiation levels. Based on the comparison of five different machine learning algorithms trained with the public space flux database, the preliminary results indicate that the best prediction accuracy is achieved with the recurrent neural network (RNN) with long short-term memory (LSTM). Y1 - 2020 U6 - https://doi.org/10.1016/j.microrel.2020.113799 SN - 0026-2714 VL - 114 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Davidzon, Iary A1 - Ilbert, Olivier A1 - Faisst, Andreas L. A1 - Sparre, Martin A1 - Capak, Peter L. T1 - An Alternate Approach to Measure Specific Star Formation Rates at 2 < z < 7 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We trace the specific star formation rate (sSFR) of massive star-forming galaxies (greater than or similar to 10(10)M(circle dot)) from z similar to 2 to 7. Our method is substantially different from previous analyses, as it does not rely on direct estimates of star formation rate, but on the differential evolution of the galaxy stellar mass function (SMF). We show the reliability of this approach by means of semianalytical and hydrodynamical cosmological simulations. We then apply it to real data, using the SMFs derived in the COSMOS and CANDELS fields. We find that the sSFR is proportional to (1 + z)(1.1) (+/-) (0.2) at z > 2, in agreement with other observations but in tension with the steeper evolution predicted by simulations from z similar to 4 to 2. We investigate the impact of several sources of observational bias, which, however, cannot account for this discrepancy. Although the SMF of high-redshift galaxies is still affected by significant errors, we show that future large-area surveys will substantially reduce them, making our method an effective tool to probe the massive end of the main sequence of star-forming galaxies. KW - galaxies: evolution KW - galaxies: high-redshift KW - galaxies: star formation Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aaa19e SN - 0004-637X SN - 1538-4357 VL - 852 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Padash, Amin A1 - Aghion, Erez A1 - Schulz, Alexander A1 - Barkai, Eli A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf A1 - Kantz, Holger T1 - Local equilibrium properties of ultraslow diffusion in the Sinai model JF - New journal of physics N2 - We perform numerical studies of a thermally driven, overdamped particle in a random quenched force field, known as the Sinai model. We compare the unbounded motion on an infinite 1-dimensional domain to the motion in bounded domains with reflecting boundaries and show that the unbounded motion is at every time close to the equilibrium state of a finite system of growing size. This is due to time scale separation: inside wells of the random potential, there is relatively fast equilibration, while the motion across major potential barriers is ultraslow. Quantities studied by us are the time dependent mean squared displacement, the time dependent mean energy of an ensemble of particles, and the time dependent entropy of the probability distribution. Using a very fast numerical algorithm, we can explore times up top 10(17) steps and thereby also study finite-time crossover phenomena. KW - Sinai diffusion KW - clustering KW - local equilibrium Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac7df8 SN - 1367-2630 VL - 24 IS - 7 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - McKenna, Russell A1 - Pfenninger, Stefan A1 - Heinrichs, Heidi A1 - Schmidt, Johannes A1 - Staffell, Iain A1 - Bauer, Christian A1 - Gruber, Katharina A1 - Hahmann, Andrea N. A1 - Jansen, Malte A1 - Klingler, Michael A1 - Landwehr, Natascha A1 - Larsén, Xiaoli Guo A1 - Lilliestam, Johan A1 - Pickering, Bryn A1 - Robinius, Martin A1 - Tröndle, Tim A1 - Turkovska, Olga A1 - Wehrle, Sebastian A1 - Weinand, Jann Michael A1 - Wohland, Jan T1 - High-resolution large-scale onshore wind energy assessments BT - a review of potential definitions, methodologies and future research needs JF - Renewable energy N2 - The rapid uptake of renewable energy technologies in recent decades has increased the demand of energy researchers, policymakers and energy planners for reliable data on the spatial distribution of their costs and potentials. For onshore wind energy this has resulted in an active research field devoted to analysing these resources for regions, countries or globally. A particular thread of this research attempts to go beyond purely technical or spatial restrictions and determine the realistic, feasible or actual potential for wind energy. Motivated by these developments, this paper reviews methods and assumptions for analysing geographical, technical, economic and, finally, feasible onshore wind potentials. We address each of these potentials in turn, including aspects related to land eligibility criteria, energy meteorology, and technical developments of wind turbine characteristics such as power density, specific rotor power and spacing aspects. Economic aspects of potential assessments are central to future deployment and are discussed on a turbine and system level covering levelized costs depending on locations, and the system integration costs which are often overlooked in such analyses. Non-technical approaches include scenicness assessments of the landscape, constraints due to regulation or public opposition, expert and stakeholder workshops, willingness to pay/accept elicitations and socioeconomic cost-benefit studies. For each of these different potential estimations, the state of the art is critically discussed, with an attempt to derive best practice recommendations and highlight avenues for future research. KW - onshore wind KW - resource assessments KW - social acceptance KW - planning constraints KW - research priorities Y1 - 2022 U6 - https://doi.org/10.1016/j.renene.2021.10.027 SN - 0960-1481 VL - 182 SP - 659 EP - 684 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - The 13 C chemical shift and the anisotropy effect of the carbene electron-deficient centre BT - simple means to characterize the electron distribution of carbenes JF - Magnetic resonance in chemistry N2 - Both the C-13 chemical shift and the calculated anisotropy effect (spatial magnetic properties) of the electron-deficient centre of stable, crystalline, and structurally characterized carbenes have been employed to unequivocally characterize potential resonance contributors to the present mesomerism (carbene, ylide, betaine, and zwitter ion) and to determine quantitatively the electron deficiency of the corresponding carbene carbon atom. Prior to that, both structures and C-13 chemical shifts were calculated and compared with the experimental delta(C-13)/ppm values and geometry parameters (as a quality criterion for obtained structures). KW - C-13 chemical shift KW - carbenes KW - zwitterions KW - carbene electron deficiency KW - nucleus-independent chemical shifts (NICS) KW - through space NMR shieldings KW - (TSNMRS) Y1 - 2019 U6 - https://doi.org/10.1002/mrc.4979 SN - 0749-1581 SN - 1097-458X VL - 58 IS - 3 SP - 280 EP - 292 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Quantification of sigma-acceptor and pi-donor stabilization in O, S and Hal analogues of N-heterocyclic carbenes (NHCs) on the magnetic criterion JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of stable O, S and Hal analogues of N-heterocyclic carbenes (NHCs) have been calculated using the GIAO perturbation method employing the nucleus-independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSSs) of various sizes and directions. The TSNMRS values (actually the anisotropy effects measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the position of the present mesomeric equilibria (carbenes <-> ylides). The results are confirmed by geometry (bond angles and bond lengths), IR spectra, UV spectra, and C-13 chemical shifts of the electron-deficient carbon centers. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpca.1c05257 SN - 1089-5639 SN - 1520-5215 VL - 125 IS - 33 SP - 7235 EP - 7245 PB - American Chemical Society CY - Washington ER -