TY - JOUR A1 - Goychuk, Igor T1 - Sensing magnetic fields with magnetosensitive ion channels JF - Sensors N2 - Magnetic nanoparticles are met across many biological species ranging from magnetosensitive bacteria, fishes, bees, bats, rats, birds, to humans. They can be both of biogenetic origin and due to environmental contamination, being either in paramagnetic or ferromagnetic state. The energy of such naturally occurring single-domain magnetic nanoparticles can reach up to 10-20 room k(B)T in the magnetic field of the Earth, which naturally led to supposition that they can serve as sensory elements in various animals. This work explores within a stochastic modeling framework a fascinating hypothesis of magnetosensitive ion channels with magnetic nanoparticles serving as sensory elements, especially, how realistic it is given a highly dissipative viscoelastic interior of living cells and typical sizes of nanoparticles possibly involved. KW - magnetic nanoparticles KW - ion channels KW - viscoelastic effects and anomalous diffusion KW - non-exponential statistics KW - influence of weak magnetic fields on living systems Y1 - 2018 U6 - https://doi.org/10.3390/s18030728 SN - 1424-8220 VL - 18 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Haubitz, Toni A1 - Fudickar, Werner A1 - Linker, Torsten A1 - Kumke, Michael Uwe T1 - pH-sensitive fluorescence switching of pyridylanthracenes BT - the effect of the isomeric pattern JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - 9,10-substituted anthracenes are known for their useful optical properties like fluorescence, which makes them frequently used probes in sensing applications. In this article, we investigate the fundamental photophysical properties of three pyridyl-substituted variants. The nitrogen atoms in the pyridinium six-membered rings are located in the ortho-, meta-, and para-positions in relation to the anthracene core. Absorption, fluorescence, and transient absorption measurements were carried out and were complemented by theoretical calculations. We monitored the photophysics of the anthracene derivatives in chloroform and water investigating the protonated as well as their nonprotonated forms. We found that the optical properties of the nonprotonated forms are strongly determined by the anthracene chromophore, with only small differences to other 9,10-substituted anthracenes, for example diphenyl anthracene. In contrast, protonation leads to a strong decrease in fluorescence intensity and lifetime. Transient absorption measurements and theoretical calculations revealed the formation of a charge-transfer state in the protonated chromophores, where electron density is shifted from the anthracene moiety toward the protonated pyridyl substituents. While the para- and ortho-derivatives' charge transfer is still moderately fluorescent, the meta-derivative is affected much stronger and shows nearly no fluorescence. This nitrogen-atom-position-dependent sensitivity to hydronium activity makes a combination of these fluorophores very attractive for pH-sensing applications covering a broadened pH range. KW - Absorption KW - Aromatic compounds KW - Fluorescence KW - Hydrocarbons KW - Reaction mechanisms Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpca.0c09911 SN - 1089-5639 SN - 1520-5215 VL - 124 IS - 52 SP - 11017 EP - 11024 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Malass, Ihsane A1 - Tarkhanov, Nikolaj Nikolaevič T1 - A perturbation of the de Rham complex T1 - Возмущение комплекса де Рама JF - Journal of Siberian Federal University : Mathematics & Physics JF - Žurnal Sibirskogo Federalʹnogo Universiteta : Matematika i fizika N2 - We consider a perturbation of the de Rham complex on a compact manifold with boundary. This perturbation goes beyond the framework of complexes, and so cohomology does not apply to it. On the other hand, its curvature is "small", hence there is a natural way to introduce an Euler characteristic and develop a Lefschetz theory for the perturbation. This work is intended as an attempt to develop a cohomology theory for arbitrary sequences of linear mappings. N2 - Рассмотрим возмущение комплекса де Рама на компактном многообразии с краем. Это возмущение выходит за рамки комплексов, и поэтому когомологии к нему не относятся. С другой стороны, его кривизна "мала", поэтому существует естественный способ ввести характеристику Эйлера и разработать теорию Лефшеца для возмущения. Данная работа предназначена для попытки разработать теорию когомологий для произвольных последовательностей линейных отображений. KW - de Rham complex KW - cohomology KW - Hodge theory KW - Neumann problem KW - комплекс де Рама KW - когомологии KW - теория Ходжа KW - проблема Неймана Y1 - 2020 U6 - https://doi.org/10.17516/1997-1397-2020-13-5-519-532 SN - 1997-1397 SN - 2313-6022 VL - 13 IS - 5 SP - 519 EP - 532 PB - Siberian Federal University CY - Krasnojarsk ER - TY - JOUR A1 - Abdalla, Hassan E. A1 - Adam, Remi A1 - Aharonian, Felix A. A1 - Benkhali, Faical Ait A1 - Angüner, Ekrem Oǧuzhan A1 - Arakawa, Masanori A1 - Arcaro, C A1 - Armand, Catherine A1 - Armstrong, T. A1 - Egberts, Kathrin T1 - Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance JF - Monthly Notices of the Royal Astronomical Society N2 - We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53. KW - BL Lacertae objects: individual KW - galaxies: high-redshift KW - gamma-rays: general KW - Resolved and unresolved sources as a function of wavelength Y1 - 2020 VL - 494 IS - 4 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Teichmann, Erik T1 - Using phase dynamics to study partial synchrony BT - three examples JF - European physical journal special topics N2 - Partial synchronous states appear between full synchrony and asynchrony and exhibit many interesting properties. Most frequently, these states are studied within the framework of phase approximation. The latter is used ubiquitously to analyze coupled oscillatory systems. Typically, the phase dynamics description is obtained in the weak coupling limit, i.e., in the first-order in the coupling strength. The extension beyond the first-order represents an unsolved problem and is an active area of research. In this paper, three partially synchronous states are investigated and presented in order of increasing complexity. First, the usage of the phase response curve for the description of macroscopic oscillators is analyzed. To achieve this, the response of the mean-field oscillations in a model of all-to-all coupled limit-cycle oscillators to pulse stimulation is measured. The next part treats a two-group Kuramoto model, where the interaction of one attractive and one repulsive group results in an interesting solitary state, situated between full synchrony and self-consistent partial synchrony. In the last part, the phase dynamics of a relatively simple system of three Stuart-Landau oscillators are extended beyond the weak coupling limit. The resulting model contains triplet terms in the high-order phase approximation, though the structural connections are only pairwise. Finally, the scaling of the new terms with the coupling is analyzed. Y1 - 2021 U6 - https://doi.org/10.1140/epjs/s11734-021-00156-3 SN - 1951-6355 SN - 1951-6401 VL - 230 IS - 14-15 SP - 2833 EP - 2842 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Schirdewahn, Daniel T1 - Stability of a parametric harmonic oscillator with dichotomic noise JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The harmonic oscillator is a powerful model that can appear as a limit case when examining a nonlinear system. A well known fact is that, without driving, the inclusion of a friction term makes the origin of the phase space-which is a fixed point of the system-linearly stable. In this work, we include a telegraph process as perturbation of the oscillator's frequency, for example, to describe the motion of a particle with fluctuating charge gyrating in an external magnetic field. Increasing intensity of this colored noise is capable of changing the quality of the fixed point. To characterize the stability of the system, we use a stability measure that describes the growth of the displacement of the system's phase space position and express it in a closed form. We expand the respective exponent for light friction and low noise intensity and compare both the exact analytic solution and the expansion to numerical values. Our findings allow stability predictions for several physical systems. Y1 - 2020 U6 - https://doi.org/10.1063/5.0012946 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Rosenblum, Michael T1 - Controlling collective synchrony in oscillatory ensembles by precisely timed pulses JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We present an efficient technique for control of synchrony in a globally coupled ensemble by pulsatile action. We assume that we can observe the collective oscillation and can stimulate all elements of the ensemble simultaneously. We pay special attention to the minimization of intervention into the system. The key idea is to stimulate only at the most sensitive phase. To find this phase, we implement an adaptive feedback control. Estimating the instantaneous phase of the collective mode on the fly, we achieve efficient suppression using a few pulses per oscillatory cycle. We discuss the possible relevance of the results for neuroscience, namely, for the development of advanced algorithms for deep brain stimulation, a medical technique used to treat Parkinson's disease. Y1 - 2020 U6 - https://doi.org/10.1063/5.0019823 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Beta, Carsten A1 - Kruse, Karsten T1 - Intracellular oscillations and waves JF - Annual review of condensed matter physics N2 - Dynamic processes in living cells are highly organized in space and time. Unraveling the underlying molecular mechanisms of spatiotemporal pattern formation remains one of the outstanding challenges at the interface between physics and biology. A fundamental recurrent pattern found in many different cell types is that of self-sustained oscillations. They are involved in a wide range of cellular functions, including second messenger signaling, gene expression, and cytoskeletal dynamics. Here, we review recent developments in the field of cellular oscillations and focus on cases where concepts from physics have been instrumental for understanding the underlying mechanisms. We consider biochemical and genetic oscillators as well as oscillations that arise from chemo-mechanical coupling. Finally, we highlight recent studies of intracellular waves that have increasingly moved into the focus of this research field. KW - self-sustained oscillations KW - biochemical oscillators KW - genetic networks KW - chemomechanical coupling KW - actin waves Y1 - 2017 SN - 978-0-8243-5008-6 U6 - https://doi.org/10.1146/annurev-conmatphys-031016-025210 SN - 1947-5454 VL - 8 SP - 239 EP - 264 PB - Annual Reviews CY - Palo Alto ER - TY - JOUR A1 - Rubio, Jesús A1 - Anders, Janet A1 - Correa, Luis A. T1 - Global quantum thermometry JF - Physical review letters / publ. by the American Physical Society N2 - A paradigm shift in quantum thermometry is proposed. To date, thermometry has relied on local estimation, which is useful to reduce statistical fluctuations once the temperature is very well known. In order to estimate temperatures in cases where few measurement data or no substantial prior knowledge are available, we build instead a method for global quantum thermometry. Based on scaling arguments, a mean logarithmic error is shown here to be the correct figure of merit for thermometry. Its full minimization provides an operational and optimal rule to postprocess measurements into a temperature reading, and it establishes a global precision limit. We apply these results to the simulated outcomes of measurements on a spin gas, finding that the local approach can lead to biased temperature estimates in cases where the global estimator converges to the true temperature. The global framework thus enables a reliable approach to data analysis in thermometry experiments. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevLett.127.190402 SN - 0031-9007 SN - 1079-7114 VL - 127 IS - 19 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Ala-Nissila, Tapio A1 - Metzler, Ralf ED - Metzler, Ralf T1 - Polymer translocation: the first two decades and the recent diversification JF - Soft matter N2 - Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous–infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis. KW - solid-state nanopores KW - single-stranded-dna KW - posttranslational protein translocation KW - anomalous diffusion KW - monte-carlo KW - structured polynucleotides KW - dynamics simulation KW - equation approach KW - osmotic-pressure KW - membrane channel Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76266 SN - 1744-683X VL - 45 IS - 10 SP - 9016 EP - 9037 PB - the Royal Society of Chemistry CY - Cambridge ER -