TY - JOUR A1 - Gou, Tingyu A1 - Liu, Rui A1 - Kliem, Bernhard A1 - Wang, Yuming A1 - Veronig, Astrid M. T1 - The birth of a coronal mass ejection JF - Science Advances N2 - The Sun’s atmosphere is frequently disrupted by coronal mass ejections (CMEs), coupled with flares and energetic particles. The coupling is usually attributed to magnetic reconnection at a vertical current sheet connecting the flare and CME, with the latter embedding a helical magnetic structure known as flux rope. However, both the origin of flux ropes and their nascent paths toward eruption remain elusive. Here, we present an observation of how a stellar-sized CME bubble evolves continuously from plasmoids, mini flux ropes that are barely resolved, within half an hour. The eruption initiates when plasmoids springing from a vertical current sheet merge into a leading plasmoid, which rises at increasing speeds and expands impulsively into the CME bubble, producing hard x-ray bursts simultaneously. This observation illuminates a complete CME evolutionary path capable of accommodating a wide variety of plasma phenomena by bridging the gap between microscale and macroscale dynamics. Y1 - 2019 U6 - https://doi.org/10.1126/sciadv.aau7004 SN - 2375-2548 VL - 5 IS - 3 PB - American Assoc. for the Advancement of Science CY - Washington ER -