TY - JOUR A1 - Li, Wenjia A1 - Tian, Fang A1 - Rudaya, Natalya A. A1 - Herzschuh, Ulrike A1 - Cao, Xianyong T1 - Pollen-based holocene thawing-history of permafrost in Northern Asia and its potential impacts on climate change JF - Frontiers in Ecology and Evolution N2 - As the recent permafrost thawing of northern Asia proceeds due to anthropogenic climate change, precise and detailed palaeoecological records from past warm periods are essential to anticipate the extent of future permafrost variations. Here, based on the modern relationship between permafrost and vegetation (represented by pollen assemblages), we trained a Random Forest model using pollen and permafrost data and verified its reliability to reconstruct the history of permafrost in northern Asia during the Holocene. An early Holocene (12-8 cal ka BP) strong thawing trend, a middle-to-late Holocene (8-2 cal ka BP) relatively slow thawing trend, and a late Holocene freezing trend of permafrost in northern Asia are consistent with climatic proxies such as summer solar radiation and Northern Hemisphere temperature. The extensive distribution of permafrost in northern Asia inhibited the spread of evergreen coniferous trees during the early Holocene warming and might have decelerated the enhancement of the East Asian summer monsoon (EASM) by altering hydrological processes and albedo. Based on these findings, we suggest that studies of the EASM should consider more the state of permafrost and vegetation in northern Asia, which are often overlooked and may have a profound impact on climate change in this region. KW - pollen KW - Random Forest KW - Siberia KW - East Asian summer monsoon KW - permafrost Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.894471 SN - 2296-701X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Kamali, Bahareh A1 - Lorite, Ignacio J. A1 - Webber, Heidi A. A1 - Rezaei, Ehsan Eyshi A1 - Gabaldon-Leal, Clara A1 - Nendel, Claas A1 - Siebert, Stefan A1 - Ramirez-Cuesta, Juan Miguel A1 - Ewert, Frank A1 - Ojeda, Jonathan J. T1 - Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain JF - Scientific reports N2 - This study investigates the main drivers of uncertainties in simulated irrigated maize yield under historical conditions as well as scenarios of increased temperatures and altered irrigation water availability. Using APSIM, MONICA, and SIMPLACE crop models, we quantified the relative contributions of three irrigation water allocation strategies, three sowing dates, and three maize cultivars to the uncertainty in simulated yields. The water allocation strategies were derived from historical records of farmer's allocation patterns in drip-irrigation scheme of the Genil-Cabra region, Spain (2014-2017). By considering combinations of allocation strategies, the adjusted R-2 values (showing the degree of agreement between simulated and observed yields) increased by 29% compared to unrealistic assumptions of considering only near optimal or deficit irrigation scheduling. The factor decomposition analysis based on historic climate showed that irrigation strategies was the main driver of uncertainty in simulated yields (66%). However, under temperature increase scenarios, the contribution of crop model and cultivar choice to uncertainty in simulated yields were as important as irrigation strategy. This was partially due to different model structure in processes related to the temperature responses. Our study calls for including information on irrigation strategies conducted by farmers to reduce the uncertainty in simulated yields at field scale. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-08056-9 SN - 2045-2322 VL - 12 IS - 1 PB - Macmillan Publishers Limited, CY - London ER - TY - JOUR A1 - Fehr, Jana A1 - Jaramillo-Gutierrez, Giovanna A1 - Oala, Luis A1 - Gröschel, Matthias I. A1 - Bierwirth, Manuel A1 - Balachandran, Pradeep A1 - Werneck-Leite, Alixandro A1 - Lippert, Christoph T1 - Piloting a Survey-Based Assessment of Transparency and Trustworthiness with Three Medical AI Tools JF - Healthcare N2 - Artificial intelligence (AI) offers the potential to support healthcare delivery, but poorly trained or validated algorithms bear risks of harm. Ethical guidelines stated transparency about model development and validation as a requirement for trustworthy AI. Abundant guidance exists to provide transparency through reporting, but poorly reported medical AI tools are common. To close this transparency gap, we developed and piloted a framework to quantify the transparency of medical AI tools with three use cases. Our framework comprises a survey to report on the intended use, training and validation data and processes, ethical considerations, and deployment recommendations. The transparency of each response was scored with either 0, 0.5, or 1 to reflect if the requested information was not, partially, or fully provided. Additionally, we assessed on an analogous three-point scale if the provided responses fulfilled the transparency requirement for a set of trustworthiness criteria from ethical guidelines. The degree of transparency and trustworthiness was calculated on a scale from 0% to 100%. Our assessment of three medical AI use cases pin-pointed reporting gaps and resulted in transparency scores of 67% for two use cases and one with 59%. We report anecdotal evidence that business constraints and limited information from external datasets were major obstacles to providing transparency for the three use cases. The observed transparency gaps also lowered the degree of trustworthiness, indicating compliance gaps with ethical guidelines. All three pilot use cases faced challenges to provide transparency about medical AI tools, but more studies are needed to investigate those in the wider medical AI sector. Applying this framework for an external assessment of transparency may be infeasible if business constraints prevent the disclosure of information. New strategies may be necessary to enable audits of medical AI tools while preserving business secrets. KW - artificial intelligence for health KW - quality assessment KW - transparency KW - trustworthiness Y1 - 2022 U6 - https://doi.org/10.3390/healthcare10101923 SN - 2227-9032 VL - 10 IS - 10 PB - MDPI CY - Basel, Schweiz ER - TY - JOUR A1 - Göldel, Julia Marlen A1 - Kamrath, Clemens A1 - Minden, Kirsten A1 - Wiegand, Susanna A1 - Lanzinger, Stefanie A1 - Sengler, Claudia A1 - Weihrauch-Blüher, Susann A1 - Holl, Reinhard A1 - Tittel, Sascha René A1 - Warschburger, Petra T1 - Access to Healthcare for Children and Adolescents with a Chronic Health Condition during the COVID-19 Pandemic: First Results from the KICK-COVID Study in Germany JF - Children N2 - This study examines the access to healthcare for children and adolescents with three common chronic diseases (type-1 diabetes (T1D), obesity, or juvenile idiopathic arthritis (JIA)) within the 4th (Delta), 5th (Omicron), and beginning of the 6th (Omicron) wave (June 2021 until July 2022) of the COVID-19 pandemic in Germany in a cross-sectional study using three national patient registries. A paper-and-pencil questionnaire was given to parents of pediatric patients (<21 years) during the routine check-ups. The questionnaire contains self-constructed items assessing the frequency of healthcare appointments and cancellations, remote healthcare, and satisfaction with healthcare. In total, 905 parents participated in the T1D-sample, 175 in the obesity-sample, and 786 in the JIA-sample. In general, satisfaction with healthcare (scale: 0–10; 10 reflecting the highest satisfaction) was quite high (median values: T1D 10, JIA 10, obesity 8.5). The proportion of children and adolescents with canceled appointments was relatively small (T1D 14.1%, JIA 11.1%, obesity 20%), with a median of 1 missed appointment, respectively. Only a few parents (T1D 8.6%; obesity 13.1%; JIA 5%) reported obstacles regarding health services during the pandemic. To conclude, it seems that access to healthcare was largely preserved for children and adolescents with chronic health conditions during the COVID-19 pandemic in Germany. KW - chronic health condition KW - children and adolescents KW - health care KW - COVID-19 pandemic KW - diabetes KW - rheumatic diseases KW - obesity Y1 - 2022 U6 - https://doi.org/10.3390/children10010010 SN - 2227-9067 VL - 10 SP - 1 EP - 11 PB - MDPI CY - Basel, Schweiz ET - 1 ER - TY - JOUR A1 - Schwarze, Martin A1 - Schellhammer, Karl Sebastian A1 - Ortstein, Katrin A1 - Benduhn, Johannes A1 - Gaul, Christopher A1 - Hinderhofer, Alexander A1 - Perdigón-Toro, Lorena A1 - Scholz, Reinhard A1 - Kublitski, Jonas A1 - Roland, Steffen A1 - Lau, Matthias A1 - Poelking, Carl A1 - Andrienko, Denis A1 - Cuniberti, Gianaurelio A1 - Schreiber, Frank A1 - Neher, Dieter A1 - Vandewal, Koen A1 - Ortmann, Frank A1 - Leo, Karl T1 - Impact of molecular quadrupole moments on the energy levels at organic heterojunctions JF - Nature Communications N2 - The functionality of organic semiconductor devices crucially depends on molecular energies, namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity values of thin films are, however, sensitive to film morphology and composition, making their prediction challenging. In a combined experimental and simulation study on zinc-phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a function of molecular orientation in neat films or mixing ratio in blends are proportional to the molecular quadrupole component along the p-p-stacking direction. We apply these findings to organic solar cells and demonstrate how the electrostatic interactions can be tuned to optimise the energy of the charge-transfer state at the donor-acceptor interface and the dissociation barrier for free charge carrier generation. The confirmation of the correlation between interfacial energies and quadrupole moments for other materials indicates its relevance for small molecules and polymers. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-10435-2 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zakrzewski, Tanja T1 - Miguel de Luna as arbitrista BT - Dossier em Honra à Professora Filomena Barros JF - Hamsa : journal of Judaic and Islamic studies : revista de estudos judaicos e islâmicos N2 - This article deals with Miguel de Luna, a Morisco from Granada, who is most famous for his involvement in the Lead Books of Sacromonte affair. In the following pages I will, however, focus on a facet of his life that has been rather neglected. Rather than recount again his activities as translator for Arabic, I will shed light on his work as physician and claim that his medical paper on the benefits of bathing and the reopening of public baths in Granada may very well put him in league with the arbitristas, a group of intellectuals who advised the monarch in economic and financial matters. KW - Arbitrista KW - Granada KW - history of medicine KW - Morisco KW - Muslim Y1 - 2023 UR - https://journals.openedition.org/hamsa/4231 U6 - https://doi.org/10.4000/hamsa.4231 SN - 2183-2633 IS - 9 SP - 1 EP - 13 PB - Universidade de Évora CY - Évora ER - TY - JOUR A1 - Smith, Sarah R. A1 - Dupont, Chris L. A1 - McCarthy, James K. A1 - Broddrick, Jared T. A1 - Obornik, Miroslav A1 - Horak, Ales A1 - Füssy, Zoltán A1 - Cihlar, Jaromir A1 - Kleessen, Sabrina A1 - Zheng, Hong A1 - McCrow, John P. A1 - Hixson, Kim K. A1 - Araujo, Wagner L. A1 - Nunes-Nesi, Adriano A1 - Fernie, Alisdair R. A1 - Nikoloski, Zoran A1 - Palsson, Bernhard O. A1 - Allen, Andrew E. T1 - Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom JF - Nature Communications N2 - Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa. KW - Biochemistry KW - Computational biology and bioinformatics KW - Evolution KW - Microbiology KW - Molecular biology Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-12407-y SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Ferrari, Camilla A1 - Proost, Sebastian A1 - Janowski, Marcin Andrzej A1 - Becker, Jörg A1 - Nikoloski, Zoran A1 - Bhattacharya, Debashish A1 - Price, Dana A1 - Tohge, Takayuki A1 - Bar-Even, Arren A1 - Fernie, Alisdair R. A1 - Stitt, Mark A1 - Mutwil, Marek T1 - Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida JF - Nature Communications N2 - Plants have adapted to the diurnal light-dark cycle by establishing elaborate transcriptional programs that coordinate many metabolic, physiological, and developmental responses to the external environment. These transcriptional programs have been studied in only a few species, and their function and conservation across algae and plants is currently unknown. We performed a comparative transcriptome analysis of the diurnal cycle of nine members of Archaeplastida, and we observed that, despite large phylogenetic distances and dramatic differences in morphology and lifestyle, diurnal transcriptional programs of these organisms are similar. Expression of genes related to cell division and the majority of biological pathways depends on the time of day in unicellular algae but we did not observe such patterns at the tissue level in multicellular land plants. Hence, our study provides evidence for the universality of diurnal gene expression and elucidates its evolutionary history among different photosynthetic eukaryotes. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-08703-2 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zhang, Youjun A1 - Chen, Moxian A1 - Siemiatkowska, Beata A1 - Toleco, Mitchell Rey A1 - Jing, Yue A1 - Strotmann, Vivien A1 - Zhang, Jianghua A1 - Stahl, Yvonne A1 - Fernie, Alisdair R. T1 - A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species JF - Plant Communications N2 - Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis. KW - transient expression KW - agro-infiltration KW - subcellular localization KW - protein-protein interaction Y1 - 2019 SN - 2590-3462 VL - 1 IS - 5 PB - Science Direct CY - New York ER - TY - JOUR A1 - Schrön, Martin A1 - Zacharias, Steffen A1 - Womack, Gary A1 - Köhli, Markus A1 - Desilets, Darin A1 - Oswald, Sascha A1 - Bumberger, Jan A1 - Mollenhauer, Hannes A1 - Kögler, Simon A1 - Remmler, Paul A1 - Kasner, Mandy A1 - Denk, Astrid A1 - Dietrich, Peter T1 - Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment JF - Geoscientific instrumentation, methods and data systems N2 - Sensor-to-sensor variability is a source of error common to all geoscientific instruments that needs to be assessed before comparative and applied research can be performed with multiple sensors. Consistency among sensor systems is especially critical when subtle features of the surrounding terrain are to be identified. Cosmic-ray neutron sensors (CRNSs) are a recent technology used to monitor hectometre-scale environmental water storages, for which a rigorous comparison study of numerous co-located sensors has not yet been performed. In this work, nine stationary CRNS probes of type "CRS1000" were installed in relative proximity on a grass patch surrounded by trees, buildings, and sealed areas. While the dynamics of the neutron count rates were found to be similar, offsets of a few percent from the absolute average neutron count rates were found. Technical adjustments of the individual detection parameters brought all instruments into good agreement. Furthermore, we found a critical integration time of 6 h above which all sensors showed consistent dynamics in the data and their RMSE fell below 1% of gravimetric water content. The residual differences between the nine signals indicated local effects of the complex urban terrain on the scale of several metres. Mobile CRNS measurements and spatial simulations with the URANOS neutron transport code in the surrounding area (25 ha) have revealed substantial sub-footprint heterogeneity to which CRNS detectors are sensitive despite their large averaging volume. The sealed and constantly dry structures in the footprint furthermore damped the dynamics of the CRNS-derived soil moisture. We developed strategies to correct for the sealed-area effect based on theoretical insights about the spatial sensitivity of the sensor. This procedure not only led to reliable soil moisture estimation during dry-out periods, it further revealed a strong signal of intercepted water that emerged over the sealed surfaces during rain events. The presented arrangement offered a unique opportunity to demonstrate the CRNS performance in complex terrain, and the results indicated great potential for further applications in urban climate research. Y1 - 2018 U6 - https://doi.org/10.5194/gi-7-83-2018 SN - 2193-0856 SN - 2193-0864 VL - 7 IS - 1 SP - 83 EP - 99 PB - Copernicus CY - Göttingen ER -