TY - JOUR A1 - Schewe, Jacob A1 - Levermann, Anders A1 - Cheng, Hai T1 - A critical humidity threshold for monsoon transitions JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - Monsoon systems around the world are governed by the so-called moisture-advection feedback. Here we show that, in a minimal conceptual model, this feedback implies a critical threshold with respect to the atmospheric specific humidity q(o) over the ocean adjacent to the monsoon region. If q(o) falls short of this critical value q(o)(c), monsoon rainfall over land cannot be sustained. Such a case could occur if evaporation from the ocean was reduced, e.g. due to low sea surface temperatures. Within the restrictions of the conceptual model, we estimate q(o)(c) from present-day reanalysis data for four major monsoon systems, and demonstrate how this concept can help understand abrupt variations in monsoon strength on orbital timescales as found in proxy records. Y1 - 2012 U6 - https://doi.org/10.5194/cp-8-535-2012 SN - 1814-9324 VL - 8 IS - 2 SP - 535 EP - 544 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schewe, Jacob A1 - Levermann, Anders A1 - Meinshausen, Malte T1 - Climate change under a scenario near 1.5 degrees C of global warming: monsoon intensification, ocean warming and steric sea level rise JF - Earth system dynamics N2 - We present climatic consequences of the Representative Concentration Pathways (RCPs) using the coupled climate model CLIMBER-3 alpha, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM) using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of future greenhouse gas (GHG) concentrations pathways currently discussed. The lowest of the RCP scenarios, RCP3-PD, is projected in CLIMBER-3 alpha to imply a maximal warming by the middle of the 21st century slightly above 1.5 degrees C and a slow decline of temperatures thereafter, approaching today's level by 2500. We identify two mechanisms that slow down global cooling after GHG concentrations peak: The known inertia induced by mixing-related oceanic heat uptake; and a change in oceanic convection that enhances ocean heat loss in high latitudes, reducing the surface cooling rate by almost 50%. Steric sea level rise under the RCP3-PD scenario continues for 200 years after the peak in surface air temperatures, stabilizing around 2250 at 30 cm. This contrasts with around 1.3 m of steric sea level rise by 2250, and 2 m by 2500, under the highest scenario, RCP8.5. Maximum oceanic warming at intermediate depth (300-800 m) is found to exceed that of the sea surface by the second half of the 21st century under RCP3-PD. This intermediate-depth warming persists for centuries even after surface temperatures have returned to present-day values, with potential consequences for marine ecosystems, oceanic methane hydrates, and ice-shelf stability. Due to an enhanced land-ocean temperature contrast, all scenarios yield an intensification of monsoon rainfall under global warming. Y1 - 2011 U6 - https://doi.org/10.5194/esd-2-25-2011 SN - 2190-4979 SN - 2190-4987 VL - 2 IS - 1 SP - 25 EP - 35 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schleussner, Carl-Friedrich A1 - Frieler, Katja A1 - Meinshausen, Malte A1 - Yin, J. A1 - Levermann, Anders T1 - Emulating Atlantic overturning strength for low emission scenarios consequences for sea-level rise along the North American east coast JF - Earth system dynamics N2 - In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommel-type box model to emulate the output of fully coupled three-dimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenarios with and without interactive atmosphere-ocean fluxes and freshwater perturbation simulations, we project the future evolution of the AMOC mean strength within the covered calibration range for the lower two Representative Concentration Pathways (RCPs) until 2100 obtained from the reduced complexity carbon cycle-climate model MAGICC 6. For RCP3-PD with a global mean temperature median below 1.0 degrees C warming relative to the year 2000, we project an ensemble median weakening of up to 11% compared to 22% under RCP4.5 with a warming median up to 1.9 degrees C over the 21st century. Additional Greenland meltwater of 10 and 20 cm of global sea-level rise equivalent further weakens the AMOC by about 4.5 and 10 %, respectively. By combining our outcome with a multi-model sea-level rise study we project a dynamic sea-level rise along the New York City coastline of 4 cm for the RCP3-PD and of 8 cm for the RCP4.5 scenario over the 21st century. We estimate the total steric and dynamic sea-level rise for New York City to be about 24 cm until 2100 for the RCP3-PD scenario, which can hold as a lower bound for sea-level rise projections in this region, as it does not include ice sheet and mountain glacier contributions. Y1 - 2011 U6 - https://doi.org/10.5194/esd-2-191-2011 SN - 2190-4979 SN - 2190-4987 VL - 2 IS - 2 SP - 191 EP - 200 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Lehmann, Jascha A1 - Coumou, Dim A1 - Frieler, Katja A1 - Eliseev, Alexey V. A1 - Levermann, Anders T1 - Future changes in extratropical storm tracks and baroclinicity under climate change JF - Environmental research letters N2 - The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have analyzed how storm tracks will change under climate change, and how these changes are related to atmospheric dynamics. However, there are still discrepancies between different studies on how storm tracks will change under future climate scenarios. Here, we show that under global warming the CMIP5 ensemble of coupled climate models projects only little relative changes in vertically averaged mid-latitude mean storm track activity during the northern winter, but agree in projecting a substantial decrease during summer. Seasonal changes in the Southern Hemisphere show the opposite behaviour, with an intensification in winter and no change during summer. These distinct seasonal changes in northern summer and southern winter storm tracks lead to an amplified seasonal cycle in a future climate. Similar changes are seen in the mid-latitude mean Eady growth rate maximum, a measure that combines changes in vertical shear and static stability based on baroclinic instability theory. Regression analysis between changes in the storm tracks and changes in the maximum Eady growth rate reveal that most models agree in a positive association between the two quantities over mid-latitude regions. KW - storm tracks KW - baroclinicity KW - climate change Y1 - 2014 U6 - https://doi.org/10.1088/1748-9326/9/8/084002 SN - 1748-9326 VL - 9 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Mengel, Matthias A1 - Levermann, Anders A1 - Schleussner, Carl-Friedrich A1 - Born, Andreas T1 - Enhanced Atlantic subpolar gyre variability through baroclinic threshold in a coarse resolution model JF - Earth system dynamics N2 - Direct observations, satellite measurements and paleo records reveal strong variability in the Atlantic subpolar gyre on various time scales. Here we show that variations of comparable amplitude can only be simulated in a coupled climate model in the proximity of a dynamical threshold. The threshold and the associated dynamic response is due to a positive feedback involving increased salt transport in the subpolar gyre and enhanced deep convection in its centre. A series of sensitivity experiments is performed with a coarse resolution ocean general circulation model coupled to a statistical-dynamical atmosphere model which in itself does not produce atmospheric variability. To simulate the impact of atmospheric variability, the model system is perturbed with freshwater forcing of varying, but small amplitude and multi-decadal to centennial periodicities and observational variations in wind stress. While both freshwater and wind-stress-forcing have a small direct effect on the strength of the subpolar gyre, the magnitude of the gyre's response is strongly increased in the vicinity of the threshold. Our results indicate that baroclinic self-amplification in the North Atlantic ocean can play an important role in presently observed SPG variability and thereby North Atlantic climate variability on multi-decadal scales. Y1 - 2012 U6 - https://doi.org/10.5194/esd-3-189-2012 SN - 2190-4979 SN - 2190-4987 VL - 3 IS - 2 SP - 189 EP - 197 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Ehlert, D. A1 - Levermann, Anders T1 - Mechanism for potential strengthening of Atlantic overturning prior to collapse JF - Earth system dynamics N2 - The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Palaeo-records and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low to high latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC. Y1 - 2014 U6 - https://doi.org/10.5194/esd-5-383-2014 SN - 2190-4979 SN - 2190-4987 VL - 5 IS - 2 SP - 383 EP - 397 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schleussner, Carl-Friedrich A1 - Runge, Jakob A1 - Lehmann, Jasvcha A1 - Levermann, Anders T1 - The role of the North Atlantic overturning and deep ocean for multi-decadal global-mean-temperature variability JF - Earth system dynamics Y1 - 2014 U6 - https://doi.org/10.5194/esd-5-103-2014 SN - 2190-4979 SN - 2190-4987 VL - 5 IS - 1 SP - 103 EP - 115 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Marzeion, Ben A1 - Levermann, Anders T1 - Loss of cultural world heritage and currently inhabited places to sea-level rise JF - Environmental research letters KW - sea-level rise KW - cultural heritage KW - chlimate impacts Y1 - 2014 U6 - https://doi.org/10.1088/1748-9326/9/3/034001 SN - 1748-9326 VL - 9 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Frieler, Katja A1 - Levermann, Anders A1 - Elliott, J. A1 - Heinke, Jens A1 - Arneth, A. A1 - Bierkens, M. F. P. A1 - Ciais, Philippe A1 - Clark, D. B. A1 - Deryng, D. A1 - Doell, P. A1 - Falloon, P. A1 - Fekete, B. A1 - Folberth, Christian A1 - Friend, A. D. A1 - Gellhorn, C. A1 - Gosling, S. N. A1 - Haddeland, I. A1 - Khabarov, N. A1 - Lomas, M. A1 - Masaki, Y. A1 - Nishina, K. A1 - Neumann, K. A1 - Oki, T. A1 - Pavlick, R. A1 - Ruane, A. C. A1 - Schmid, E. A1 - Schmitz, C. A1 - Stacke, T. A1 - Stehfest, E. A1 - Tang, Q. A1 - Wisser, D. A1 - Huber, Veronika A1 - Piontek, Franziska A1 - Warszawski, Lila A1 - Schewe, Jacob A1 - Lotze-Campen, Hermann A1 - Schellnhuber, Hans Joachim T1 - A framework for the cross-sectoral integration of multi-model impact projections BT - land use decisions under climate impacts uncertainties JF - Earth system dynamics N2 - Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making. Y1 - 2015 U6 - https://doi.org/10.5194/esd-6-447-2015 SN - 2190-4979 SN - 2190-4987 VL - 6 IS - 2 SP - 447 EP - 460 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Feldmann, Johannes A1 - Levermann, Anders T1 - Interaction of marine ice-sheet instabilities in two drainage basins: simple scaling of geometry and transition time JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - The initiation of a marine ice-sheet instability (MISI) is generally discussed from the ocean side of the ice sheet. It has been shown that the reduction in ice-shelf buttressing and softening of the coastal ice can destabilize a marine ice sheet if the bedrock is sloping upward towards the ocean. Using a conceptional flow-line geometry, we investigate the possibility of whether a MISI can be triggered from the direction of the ice divide as opposed to coastal forcing and explore the interaction between connected basins. We find that the initiation of a MISI in one basin can induce a destabilization in the other. The underlying mechanism of basin interaction is based on dynamic thinning and a consecutive motion of the ice divide which induces a thinning in the adjacent basin and a successive initiation of the instability. Our simplified and symmetric topographic setup allows scaling both the geometry and the transition time between both instabilities. We find that the ice profile follows a universal shape that is scaled with the horizontal extent of the ice sheet and that the same exponent of 1/2 applies for the scaling relation between central surface elevation and horizontal extent as in the pure shallow ice approximation (Vialov profile). Altering the central bed elevation, we find that the extent of grounding-line retreat in one basin determines the degree of interaction with the other. Different scenarios of basin interaction are discussed based on our modeling results as well as on a conceptual flux-balance analysis. We conclude that for the three-dimensional case, the possibility of drainage basin interaction on timescales on the order of 1 kyr or larger cannot be excluded and hence needs further investigation. Y1 - 2015 U6 - https://doi.org/10.5194/tc-9-631-2015 SN - 1994-0416 SN - 1994-0424 VL - 9 IS - 2 SP - 631 EP - 645 PB - Copernicus CY - Göttingen ER -