TY - JOUR A1 - Ullrich, Sophie Louise A1 - Hegnauer, Mark A1 - Nguyen, Dung Viet A1 - Merz, Bruno A1 - Kwadijk, Jaap A1 - Vorogushyn, Sergiy T1 - Comparative evaluation of two types of stochastic weather generators for synthetic precipitation in the Rhine basin JF - Journal of hydrology N2 - Stochastic modeling of precipitation for estimation of hydrological extremes is an important element of flood risk assessment and management. The spatially consistent estimation of rainfall fields and their temporal variability remains challenging and is addressed by various stochastic weather generators. In this study, two types of weather generators are evaluated against observed data and benchmarked regarding their ability to simulate spatio-temporal precipitation fields in the Rhine catchment. A multi-site station-based weather generator uses an auto-regressive model and estimates the spatial correlation structure between stations. Another weather generator is raster-based and uses the nearest-neighbor resampling technique for reshuffling daily patterns while preserving the correlation structure between the observations. Both weather generators perform well and are comparable at the point (station) scale with regards to daily mean and 99.9th percentile precipitation as well as concerning wet/dry frequencies and transition probabilities. The areal extreme precipitation at the sub-basin scale is however overestimated in the station-based weather generator due to an overestimation of the correlation structure between individual stations. The auto-regressive model tends to generate larger rainfall fields in space for extreme precipitation than observed, particularly in summer. The weather generator based on nearest-neighbor resampling reproduces the observed daily and multiday (5, 10 and 20) extreme events in a similar magnitude. Improvements in performance regarding wet frequencies and transition probabilities are recommended for both models. KW - Rainfall generation KW - Rainfall occurrence KW - Multi-site stochastic weather KW - generator KW - Resampling weather generator KW - Time series analysis Y1 - 2021 U6 - https://doi.org/10.1016/j.jhydrol.2021.126544 SN - 0022-1694 SN - 1879-2707 VL - 601 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Speckhann, Gustavo Andrei A1 - Kreibich, Heidi A1 - Merz, Bruno T1 - Inventory of dams in Germany JF - Earth system science data : the data publishing journal N2 - Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers for various purposes, such as seasonal forecasting of water availability or flood mitigation. However, detailed information on dams on the national level for Germany is so far not freely available. We present the most comprehensive open-access dam inventory for Germany (DIG) to date. We have collected and combined information on dams using books, state agency reports, engineering reports, and internet pages. We have applied a priority rule that ensures the highest level of reliability for the dam information. Our dam inventory comprises 530 dams in Germany with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics. We have used a global, satellite-based water surface raster to evaluate the location of the dams. A significant proportion (63 %) of dams were built between 1950-2013. Our inventory shows that dams in Germany are mostly single-purpose (52 %), 53% can be used for flood control, and 25% are involved in energy production. The inventory is freely available through GFZ (GeoForschungsZentrum) Data Services (https://doi.org/10.5880/GFZ.4.4.2020.005) Y1 - 2021 U6 - https://doi.org/10.5194/essd-13-731-2021 SN - 1866-3508 SN - 1866-3516 VL - 13 IS - 2 SP - 731 EP - 740 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Kreibich, Heidi A1 - Hudson, Paul A1 - Merz, Bruno T1 - Knowing what to do substantially improves the effectiveness of flood early warning JF - Bulletin of the American Meteorological Society N2 - Flood warning systems are longstanding success stories with respect to protecting human life, but monetary losses continue to grow. Knowledge on the effectiveness of flood early warning in reducing monetary losses is scarce, especially at the individual level. To gain more knowledge in this area, we analyze a dataset that is unique with respect to detailed information on warning reception and monetary losses at the property level and with respect to amount of data available. The dataset contains 4,468 loss cases from six flood events in Germany. These floods occurred between 2002 and 2013. The data from each event were collected by computer-aided telephone interviews in four surveys following a repeated cross-sectional design. We quantitatively reveal that flood early warning is only effective in reducing monetary losses when people know what to do when they receive the warning. We also show that particularly long-term preparedness is associated with people knowing what to do when they receive a warning. Thus, risk communication, training, and (financial) support for private preparedness are effective in mitigating flood losses in two ways: precautionary measures and more effective emergency responses. KW - adaptation KW - damage assessment KW - emergency preparedness KW - emergency KW - response KW - flood events Y1 - 2021 U6 - https://doi.org/10.1175/BAMS-D-20-0262.1 SN - 0003-0007 SN - 1520-0477 VL - 102 IS - 7 SP - E1450 EP - E1463 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Nied, Manuela A1 - Schröter, Kai A1 - Lüdtke, Stefan A1 - Nguyen, Viet Dung A1 - Merz, Bruno T1 - What are the hydro-meteorological controls on flood characteristics? JF - Journal of hydrology N2 - Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics. KW - Flood KW - Flood duration KW - Flood magnitude KW - Flood loss KW - Soil moisture patterns KW - Antecedent conditions KW - Weather patterns KW - Large basins Y1 - 2017 U6 - https://doi.org/10.1016/j.jhydrol.2016.12.003 SN - 0022-1694 SN - 1879-2707 VL - 545 SP - 310 EP - 326 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bürger, Gerd A1 - Heistermann, Maik T1 - Shallow and deep learning of extreme rainfall events from convective atmospheres JF - Natural hazards and earth system sciences : NHESS N2 - Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify daily ERA5 fields of convective indices according to CatRaRE, using an array of 13 statistical methods, consisting of 4 conventional (“shallow”) and 9 more recent deep machine learning (DL) algorithms; the classifiers are then applied to corresponding fields of simulated present and future atmospheres from the Coordinated Regional Climate Downscaling Experiment (CORDEX) project. The inherent uncertainty of the DL results from the stochastic nature of their optimization is addressed by employing an ensemble approach using 20 runs for each network. The shallow random forest method performs best with an equitable threat score (ETS) around 0.52, followed by the DL networks ALL-CNN and ResNet with an ETS near 0.48. Their success can be understood as a result of conceptual simplicity and parametric parsimony, which obviously best fits the relatively simple classification task. It is found that, on summer days, CatRaRE convective atmospheres over Germany occur with a probability of about 0.5. This probability is projected to increase, regardless of method, both in ERA5-reanalyzed and CORDEX-simulated atmospheres: for the historical period we find a centennial increase of about 0.2 and for the future period one of slightly below 0.1. Y1 - 2023 U6 - https://doi.org/10.5194/nhess-23-3065-2023 SN - 1561-8633 SN - 1684-9981 VL - 23 IS - 9 SP - 3065 EP - 3077 PB - European Geophysical Society CY - Katlenburg-Lindau ER - TY - JOUR A1 - Tarasova, Larisa A1 - Merz, Ralf A1 - Kiss, Andrea A1 - Basso, Stefano A1 - Blöchl, Günter A1 - Merz, Bruno A1 - Viglione, Alberto A1 - Plötner, Stefan A1 - Guse, Björn A1 - Schumann, Andreas A1 - Fischer, Svenja A1 - Ahrens, Bodo A1 - Anwar, Faizan A1 - Bárdossy, András A1 - Bühler, Philipp A1 - Haberlandt, Uwe A1 - Kreibich, Heidi A1 - Krug, Amelie A1 - Lun, David A1 - Müller-Thomy, Hannes A1 - Pidoto, Ross A1 - Primo, Cristina A1 - Seidel, Jochen A1 - Vorogushyn, Sergiy A1 - Wietzke, Luzie T1 - Causative classification of river flood events JF - Wiley Interdisciplinary Reviews : Water N2 - A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large-scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph-based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space-time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods. This article is categorized under: Science of Water > Water Extremes Science of Water > Hydrological Processes Science of Water > Methods KW - flood genesis KW - flood mechanisms KW - flood typology KW - historical floods KW - hydroclimatology of floods Y1 - 2019 U6 - https://doi.org/10.1002/wat2.1353 SN - 2049-1948 VL - 6 IS - 4 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Merz, Bruno A1 - Basso, Stefano A1 - Fischer, Svenja A1 - Lun, David A1 - Bloeschl, Guenter A1 - Merz, Ralf A1 - Guse, Bjorn A1 - Viglione, Alberto A1 - Vorogushyn, Sergiy A1 - Macdonald, Elena A1 - Wietzke, Luzie A1 - Schumann, Andreas T1 - Understanding heavy tails of flood peak distributions JF - Water resources research N2 - Statistical distributions of flood peak discharge often show heavy tail behavior, that is, extreme floods are more likely to occur than would be predicted by commonly used distributions that have exponential asymptotic behavior. This heavy tail behavior may surprise flood managers and citizens, as human intuition tends to expect light tail behavior, and the heaviness of the tails is very difficult to predict, which may lead to unnecessarily high flood damage. Despite its high importance, the literature on the heavy tail behavior of flood distributions is rather fragmented. In this review, we provide a coherent overview of the processes causing heavy flood tails and the implications for science and practice. Specifically, we propose nine hypotheses on the mechanisms causing heavy tails in flood peak distributions related to processes in the atmosphere, the catchment, and the river system. We then discuss to which extent the current knowledge supports or contradicts these hypotheses. We also discuss the statistical conditions for the emergence of heavy tail behavior based on derived distribution theory and relate them to the hypotheses and flood generation mechanisms. We review the degree to which the heaviness of the tails can be predicted from process knowledge and data. Finally, we recommend further research toward testing the hypotheses and improving the prediction of heavy tails. KW - extreme events KW - flood frequency KW - flood risk KW - upper tail Y1 - 2022 U6 - https://doi.org/10.1029/2021WR030506 SN - 0043-1397 SN - 1944-7973 VL - 58 IS - 6 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kurths, Jürgen A1 - Agarwal, Ankit A1 - Shukla, Roopam A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Caesar, Levke A1 - Krishnan, Raghavan A1 - Merz, Bruno T1 - Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach JF - Nonlinear processes in geophysics N2 - A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting. Y1 - 2019 U6 - https://doi.org/10.5194/npg-26-251-2019 SN - 1023-5809 SN - 1607-7946 VL - 26 IS - 3 SP - 251 EP - 266 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Nguyen Nghia Hung, A1 - Delgado, José Miguel Martins A1 - Güntner, Andreas A1 - Merz, Bruno A1 - Bardossy, Andras A1 - Apel, Heiko T1 - Sedimentation in the floodplains of the Mekong Delta, Vietnam. Part I: suspended sediment dynamics JF - Hydrological processes N2 - Suspended sediment is the primary source for a sustainable agro-ecosystem in the Mekong Delta by providing nutrient input for the subsequent cropping season. In addition, the suspended sediment concentration (SSC) plays an important role in the erosion and deposition processes in the Delta; that is, it influences the morphologic development and may counteract the deltaic subsidence and sea level rise. Despite this importance, little is known about the dynamics of suspended sediment in the floodplains of the Mekong Delta. In particular, quantitative analyses are lacking mainly because of data scarcity with respect to the inundation processes in the floodplains. In 2008, therefore, a comprehensive in situ system to monitor the dynamics of suspended sediment in a study area located in the Plain of Reeds was established, aiming at the characterization and quantification of suspended sediment dynamics in the deeply inundated parts of the Vietnamese part of the Mekong Delta. The monitoring system was equipped with seven water quality-monitoring stations. They have a robust design and autonomous power supply suitable for operation on inundated floodplains, enabling the collection of reliable data over a long period of time with a high temporal resolution. The data analysis shows that the general seasonal dynamics of suspended sediment transport in the Delta is controlled by two main mechanisms: the flood wave of the Mekong River and the tidal backwater influences from the coast. In the channel network, SSC decreases exponentially with distance from the Mekong River. The anthropogenic influence on SSC could also be identified for two periods: at the start of the floodplain inundation and at the end of the flood period, when subsequent paddy rice crops are prepared. Based on the results, we recommend an operation scheme for the sluice gates, which intends to distribute the sediment and thus the nutrients equally over the floodplain. KW - Mekong Delta KW - floodplain KW - suspended sediment KW - sediment dynamics KW - floodplain sedimentation Y1 - 2014 U6 - https://doi.org/10.1002/hyp.9856 SN - 0885-6087 SN - 1099-1085 VL - 28 IS - 7 SP - 3132 EP - 3144 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Agarwal, Ankit A1 - Caesar, Levke A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno T1 - Network-based identification and characterization of teleconnections on different scales JF - Scientific Reports N2 - Sea surface temperature (SST) patterns can – as surface climate forcing – affect weather and climate at large distances. One example is El Niño-Southern Oscillation (ENSO) that causes climate anomalies around the globe via teleconnections. Although several studies identified and characterized these teleconnections, our understanding of climate processes remains incomplete, since interactions and feedbacks are typically exhibited at unique or multiple temporal and spatial scales. This study characterizes the interactions between the cells of a global SST data set at different temporal and spatial scales using climate networks. These networks are constructed using wavelet multi-scale correlation that investigate the correlation between the SST time series at a range of scales allowing instantaneously deeper insights into the correlation patterns compared to traditional methods like empirical orthogonal functions or classical correlation analysis. This allows us to identify and visualise regions of – at a certain timescale – similarly evolving SSTs and distinguish them from those with long-range teleconnections to other ocean regions. Our findings re-confirm accepted knowledge about known highly linked SST patterns like ENSO and the Pacific Decadal Oscillation, but also suggest new insights into the characteristics and origins of long-range teleconnections like the connection between ENSO and Indian Ocean Dipole. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-45423-5 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited CY - London ER -