TY - THES A1 - Djalali, Saveh Arman T1 - Multiresponsive complex emulsions: Concepts for the design of active and adaptive liquid colloidal systems T1 - Multiresponsive komplexe Emulsionen: Konzepte für das Design von aktiven und adaptiven flüssig-kolloidalen Systemen N2 - Complex emulsions are dispersions of kinetically stabilized multiphasic emulsion droplets comprised of two or more immiscible liquids that provide a novel material platform for the generation of active and dynamic soft materials. In recent years, the intrinsic reconfigurable morphological behavior of complex emulsions, which can be attributed to the unique force equilibrium between the interfacial tensions acting at the various interfaces, has become of fundamental and applied interest. As such, particularly biphasic Janus droplets have been investigated as structural templates for the generation of anisotropic precision objects, dynamic optical elements or as transducers and signal amplifiers in chemo- and bio-sensing applications. In the present thesis, switchable internal morphological responses of complex droplets triggered by stimuli-induced alterations of the balance of interfacial tensions have been explored as a universal building block for the design of multiresponsive, active, and adaptive liquid colloidal systems. A series of underlying principles and mechanisms that influence the equilibrium of interfacial tensions have been uncovered, which allowed the targeted design of emulsion bodies that can alter their shape, bind and roll on surfaces, or change their geometrical shape in response to chemical stimuli. Consequently, combinations of the unique triggerable behavior of Janus droplets with designer surfactants, such as a stimuli-responsive photosurfactant (AzoTAB) resulted for instance in shape-changing soft colloids that exhibited a jellyfish inspired buoyant motion behavior, holding great promise for the design of biological inspired active material architectures and transformable soft robotics. In situ observations of spherical Janus emulsion droplets using a customized side-view microscopic imaging setup with accompanying pendant dropt measurements disclosed the sensitivity regime of the unique chemical-morphological coupling inside complex emulsions and enabled the recording of calibration curves for the extraction of critical parameters of surfactant effectiveness. The deduced new "responsive drop" method permitted a convenient and cost-efficient quantification and comparison of the critical micelle concentrations (CMCs) and effectiveness of various cationic, anionic, and nonionic surfactants. Moreover, the method allowed insightful characterization of stimuli-responsive surfactants and monitoring of the impact of inorganic salts on the CMC and surfactant effectiveness of ionic and nonionic surfactants. Droplet functionalization with synthetic crown ether surfactants yielded a synthetically minimal material platform capable of autonomous and reversible adaptation to its chemical environment through different supramolecular host-guest recognition events. Addition of metal or ammonium salts resulted in the uptake of the resulting hydrophobic complexes to the hydrocarbon hemisphere, whereas addition of hydrophilic ammonium compounds such as amino acids or polypeptides resulted in supramolecular assemblies at the hydrocarbon-water interface of the droplets. The multiresponsive material platform enabled interfacial complexation and thus triggered responses of the droplets to a variety of chemical triggers including metal ions, ammonium compounds, amino acids, antibodies, carbohydrates as well as amino-functionalized solid surfaces. In the final chapter, the first documented optical logic gates and combinatorial logic circuits based on complex emulsions are presented. More specifically, the unique reconfigurable and multiresponsive properties of complex emulsions were exploited to realize droplet-based logic gates of varying complexity using different stimuli-responsive surfactants in combination with diverse readout methods. In summary, different designs for multiresponsive, active, and adaptive liquid colloidal systems were presented and investigated, enabling the design of novel transformative chemo-intelligent soft material platforms. N2 - Komplexe Emulsionen sind Dispersionen kinetisch stabilisierter mehrphasiger Emulsionströpfchen, die aus zwei oder mehreren nicht mischbaren Flüssigkeiten bestehen und eine neuartige Materialplattform für die Herstellung aktiver und dynamischer weicher Materialien darstellen. In den letzten Jahren haben komplexe Emulsionen aufgrund ihres intrinsisch rekonfigurierbaren morphologischen Verhaltens, dass auf ein einzigartiges Kräftegleichgewicht zwischen den an den verschiedenen Grenzflächen wirkenden Grenzflächenspannungen zurückzuführen ist, zunehmendes wissenschaftliches Interesse erfahren. So wurden insbesondere zweiphasige Janus-Tropfen als strukturelle Vorlagen für die Erzeugung anisotroper Präzisionsobjekte, dynamischer optischer Elemente oder als Wandler und Signalverstärker in Chemo- und Bio-Sensorik-Anwendungen untersucht. In der vorliegenden Arbeit wurden schaltbare interne morphologische Veränderungen komplexer Tröpfchen erforscht, die durch Stimulus-induzierte Verschiebungen des Grenzflächenspannungsgleichgewichts ausgelöst werden. Diese können als universelle Bausteine für das Design multiresponsiver, aktiver und adaptiver flüssiger kolloidaler Systeme dienen. Es wurde eine Reihe von grundlegenden Prinzipien und Mechanismen zur Beeinflussung des Grenzflächenspannungsgleichgewichtes erforscht, die die gezielte Entwicklung von formverändernden, sich an Oberflächen bindenden und in Reaktion auf chemische Stimuli verändernden Emulsionskörpern ermöglicht. Die Kombination des einzigartigen responsiven Verhaltens von Janus-Tropfen mit maßgeschneiderten Tensiden erlaubt die Erschließung von biologisch inspirierten aktiven Materialarchitekturen. So führte beispielsweise die Funktionalisierung von Janus-Tropfen mit einem photo-responsiven Tensid (AzoTAB) zu formverändernden weichen Kolloiden, die ein von Quallen inspiriertes Schwimmverhalten zeigten und damit vielversprechend für die Anwendung im Forschungsfeld der transformierbaren „soft-robotics“ sind. Die In-situ-Beobachtung von sphärischen Janus-Emulsionströpfchen mit einem Seitenansichts-Mikroskop und begleitenden Pendant-Drop-Messungen ermöglichten es das Empfindlichkeitsregime der einzigartigen chemisch-morphologischen Kopplung innerhalb komplexer Emulsionen offenzulegen. Die resultierende Kalibrierungskurve erlaubt die Extraktion von kritischen Parametern der Tensidwirksamkeit. Die daraus abgeleitete neue "responsive drop"-Methode ermöglicht eine einfache, kosteneffiziente Quantifizierung der kritischen Mizellenkonzentrationen (CMCs) und einen Vergleich der Wirksamkeit verschiedener kationischer, anionischer und nichtionischer Tenside. Darüber hinaus ermöglichte die Methode eine aufschlussreiche Charakterisierung Stimuli-responsiver Tenside und die Überwachung des Einflusses anorganischer Salze auf die CMC und die Tensidwirksamkeit ionischer und nichtionischer Tenside. Die Funktionalisierung von Tröpfchen mit synthetischen Kronenether-Tensiden führte zu einer synthetisch minimalen Materialplattform, die in der Lage ist, sich durch verschiedene supramolekulare Wirts-Gast-Erkennungsereignisse selbständig und reversibel an ihre chemische Umgebung anzupassen. Die Zugabe von Metall- oder Ammoniumsalzen hatte eine Aufnahme der resultierenden hydrophoben Komplexe in die Kohlenwasserstoff-Hemisphäre zur Folge, während die Zugabe von hydrophilen Ammoniumverbindungen wie Aminosäuren oder Polypeptiden zu supramolekularen Assemblierungen an der Kohlenwasserstoff-Wasser-Grenzfläche der Tröpfchen führte. Die multiresponsive Materialplattform ermöglicht die Grenzflächenkomplexierung und damit die morphologische Reaktion der Tröpfchen auf eine Vielzahl von chemischen Triggern, darunter Metallionen, Ammoniumverbindungen, Aminosäuren, Antikörper, Kohlenhydrate sowie aminofunktionalisierte feste Oberflächen. Im letzten Kapitel werden die ersten dokumentierten optischen Logikgatter und kombinatorischen Logikschaltungen auf der Grundlage von komplexen Emulsionen vorgestellt. Zur Realisierung von Tropfen-basierten Logikgattern unterschiedlicher Komplexität wurden die einzigartigen rekonfigurierbaren und multiresponsiven Eigenschaften komplexer Emulsionen ausgenutzt. Dabei wurden Stimuli-responsive Tenside in Kombination mit unterschiedlichen Auslesemethoden verwendet. Zusammenfassend wurden verschiedene Designs für multiresponsive, aktive und adaptive flüssige kolloidale Systeme vorgestellt und untersucht, die die Entwicklung neuartiger chemo-intelligenter weicher Materialplattformen ermöglichen. KW - complex emulsion KW - emulsion KW - multiresponsive KW - komplexe Emulsion KW - Emulsion KW - multiresponsiv Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-575203 ER - TY - THES A1 - Kim, Jiyong T1 - Synthesis of InP quantum dots and their applications N2 - Technologically important, environmentally friendly InP quantum dots (QDs) typically used as green and red emitters in display devices can achieve exceptional photoluminescence quantum yields (PL QYs) of near-unity (95-100%) when the-state-of-the-art core/shell heterostructure of the ZnSe inner/ZnS outer shell is elaborately applied. Nevertheless, it has only led to a few industrial applications as QD liquid crystal display (QD–LCD) which is applied to blue backlight units, even though QDs has a lot of possibilities that able to realize industrially feasible applications, such as QD light-emitting diodes (QD‒LEDs) and luminescence solar concentrator (LSC), due to their functionalizable characteristics. Before introducing the main research, the theoretical basis and fundamentals of QDs are described in detail on the basis of the quantum mechanics and experimental synthetic results, where a concept of QD and colloidal QD, a type-I core/shell structure, a transition metal doped semiconductor QDs, the surface chemistry of QD, and their applications (LSC, QD‒LEDs, and EHD jet printing) are sequentially elucidated for better understanding. This doctoral thesis mainly focused on the connectivity between QD materials and QD devices, based on the synthesis of InP QDs that are composed of inorganic core (core/shell heterostructure) and organic shell (surface ligands on the QD surface). In particular, as for the former one (core/shell heterostructure), the ZnCuInS mid-shell as an intermediate layer is newly introduced between a Cu-doped InP core and a ZnS shell for LSC devices. As for the latter one (surface ligands), the ligand effect by 1-octanethiol and chloride ion are investigated for the device stability in QD‒LEDs and the printability of electro-hydrodynamic (EHD) jet printing system, in which this research explores the behavior of surface ligands, based on proton transfer mechanism on the QD surface. Chapter 3 demonstrates the synthesis of strain-engineered highly emissive Cu:InP/Zn–Cu–In–S (ZCIS)/ZnS core/shell/shell heterostructure QDs via a one-pot approach. When this unconventional combination of a ZCIS/ZnS double shelling scheme is introduced to a series of Cu:InP cores with different sizes, the resulting Cu:InP/ZCIS/ZnS QDs with a tunable near-IR PL range of 694–850 nm yield the highest-ever PL QYs of 71.5–82.4%. These outcomes strongly point to the efficacy of the ZCIS interlayer, which makes the core/shell interfacial strain effectively alleviated, toward high emissivity. The presence of such an intermediate ZCIS layer is further examined by comparative size, structural, and compositional analyses. The end of this chapter briefly introduces the research related to the LSC devices, fabricated from Cu:InP/ZCIS/ZnS QDs, currently in progress. Chapter 4 mainly deals with ligand effect in 1-octanethiol passivation of InP/ZnSe/ZnS QDs in terms of incomplete surface passivation during synthesis. This chapter demonstrates the lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanthiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bound on the incomplete QD surface. The systematic chemical analyses, such as thermogravimetric analysis‒mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD‒LEDs). Chapter 5 shows the relation between material stability of QDs and device stability of QD‒LEDs through the investigation of surface chemistry and shell thickness. In typical III–V colloidal InP quantum dots (QDs), an inorganic ZnS outermost shell is used to provide stability when overcoated onto the InP core. However, this work presents a faster photo-degradation of InP/ZnSe/ZnS QDs with a thicker ZnS shell than that with a thin ZnS shell when 1-octanethiol was applied as a sulfur source to form ZnS outmost shell. Herein, 1-octanethiol induces the form of weakly-bound carboxylate ligand via proton transfer on the QD surface, resulting in a faster degradation at UV light even though a thicker ZnS shell was formed onto InP/ZnSe QDs. Detailed insight into surface chemistry was obtained from proton nuclear magnetic resonance spectroscopy and thermogravimetric analysis–mass spectrometry. However, the lifetimes of the electroluminescence devices fabricated from InP/ZnSe/ZnS QDs with a thick or a thin ZnS shell show surprisingly the opposite result to the material stability of QDs, where the QD light-emitting diodes (QD‒LEDs) with a thick ZnS shelled QDs maintained its luminance more stable than that with a thin ZnS shelled QDs. This study elucidates the degradation mechanism of the QDs and the QD light-emitting diodes based on the results and discuss why the material stability of QDs is different from the lifetime of QD‒LEDs. Chapter 6 suggests a method how to improve a printability of EHD jet printing when QD materials are applied to QD ink formulation, where this work introduces the application of GaP mid-shelled InP QDs as a role of surface charge in EHD jet printing technique. In general, GaP intermediate shell has been introduced in III–V colloidal InP quantum dots (QDs) to enhance their thermal stability and quantum efficiency in the case of type-I core/shell/shell heterostructure InP/GaP/ZnSeS QDs. Herein, these highly luminescent InP/GaP/ZnSeS QDs were synthesized and applied to EHD jet printing, by which this study demonstrates that unreacted Ga and Cl ions on the QD surface induce the operating voltage of cone jet and cone jet formation to be reduced and stabilized, respectively. This result indicates GaP intermediate shell not only improves PL QY and thermal stability of InP QDs but also adjusts the critical flow rate required for cone-jet formation. In other words, surface charges of quantum dots can have a significant role in forming cone apex in the EHD capillary nozzle. For an industrially convenient validation of surface charges on the QD surface, Zeta potential analyses of QD solutions as a simple method were performed, as well as inductively coupled plasma optical emission spectrometry (ICP-OES) for a composition of elements. Beyond the generation of highly emissive InP QDs with narrow FWHM, these studies talk about the connection between QD material and QD devices not only to make it a vital jumping-off point for industrially feasible applications but also to reveal from chemical and physical standpoints the origin that obstructs the improvement of device performance experimentally and theoretically. N2 - Umweltfreundliche InP Quantenpunkte (QDs) sind technologisch relevant und werden typischerweise als grüne und rote Emitter in Bildschirmen verwendet. Nach dem Stand der Technik kann eine sorgfältig hergestellte Kern-Schale-Heterostruktur (ZnSe innen/ZnS außen) zu außergewöhnlich hohen Photolumineszenz-Quantenausbeuten (PL-QYs) von nahezu Eins (95 - 100 %) führen. Dennoch gibt es bisher nur einige wenige industrielle Anwendungen wie QD-Flüssigkristall-Bildschirme (liquid crystal display, QD-LCD), in denen die Anregung durch eine blaue Hintergrundbeleuchtung realisiert wird. Dabei haben QDs aufgrund ihrer Modifizierbarkeit noch viele weitere industrielle Einsatzmöglichkeiten, beispielsweise QD basierte lichtemittierende Dioden (QD-LEDs) und lumineszierende Solarkollektoren (luminescence solar concentrator, LSC). Vor dem Hauptteil werden in den Kapiteln 1 und 2 die Grundlagen von QDs und die theoretischen Grundlagen basierend auf quantenmechanischer Beschreibung und experimentellen Ergebnissen eingeführt. Zum besseren Verständnis werden: das Konzept der QDs, kolloidale QDs, Kern-Schale-Strukturen vom Typ I, mit Übergangsmetallen dotierte Halbleiter-QDs, die Oberflächenchemie von QDs und ihre Anwendungen (LSC, QD-LEDs und electrohydrodynamic EHD-Jet-Printing), nacheinander eingeführt. Der Schwerpunkt dieser Doktorarbeit liegt hauptsächlich auf der Kombination von QD-Materialien und QD-Bauelementen, basierend auf der Synthese von InP QDs mit einem anorganischen Kern (Kern-Schale-Heterostruktur) und einer organischen Hülle (Oberflächenliganden auf der QD-Oberfläche). In die Kern-Schale-Heterostruktur wird eine ZnCuInS-Mittelschale als Zwischenschicht zwischen einem Cu-dotierten InP Kern und einer ZnS-Schale für LSC-Bauelemente neu eingeführt. Bei den Oberflächenliganden wird der Ligandeneffekt von 1-Oktanthiol und Chloridionen auf die Stabilität von QD-LEDs und die Druckbarkeit mit EHD-Jet-Printing hin untersucht. Dabei erhält der Protonentransfermechanismus auf der QD-Oberfläche ein besonderes Augenmerk. In Kapitel 3 wird die Eintopfsynthese von hocheffizient emittierenden QDs mit einer Cu:InP/Zn-Cu-In-S (ZCIS)/ZnS Kern/Schale/Schale-Heterostruktur beschrieben. Wenn diese neuartige Kombination einer ZCIS/ZnS-Doppelschalenstruktur mit eine Reihe von Cu:InP-Kerne mit unterschiedlichen Größen kombiniert wird, ergeben die daraus entstehenden Cu:InP/ZCIS/ZnS-QDs die bisher höchsten publizierten PL-QYs von 71,5 – 82,4 % im nahen IR-Bereich von 694 – 850 nm mit einstellbarer PL Wellenlänge. Diese Ergebnisse weisen auf die Wirksamkeit der ZCIS-Zwischenschicht hin, welche die Grenzflächenspannung zwischen Kern und Schale effektiv mildert und damit zu einem solch hohen Emissionsvermögen führt. Diese ZCIS-Zwischenschicht wird durch vergleichende Größen-, Struktur- und Zusammensetzungsanalysen weiter untersucht. Am Ende des Kapitels wird der aktuellen Stand der Forschung auf dem Gebiet der LSC-Bauelemente aus solchen Cu:InP/ZCIS/ZnS-QDs vorgestellt. Kapitel 4 befasst sich hauptsächlich mit dem Ligandeneffekt bei der Passivierung mit 1-Oktanthiol von InP/ZnSe/ZnS-QDs im Hinblick auf die unvollständige Oberflächenpassivierung während der Synthese. Es fehlen anionischen Carboxylat-Liganden auf der InP/ZnSe/ZnS-Oberfläche der QDs, an denen Zink Carboxylat Liganden durch Protonentransfer vom 1-Oktanthiol in Carbonsäure-Liganden umgewandelt werden könnten. Die so synthetisierten QDs haben zunächst eine unterkoordinierte Oberfläche mit Leerstellen, die durch Lösungsmittel-Liganden wie Ethanol oder Aceton passiviert werden. Wenn 1-Octanthiol an die QD-Oberfläche bindet bewirkt der Protonentransfer die Bindung von Carboxylat-Liganden (aus Zink-Carboxylat) an die Oberfläche, wobei Ethanol- oder Aceton-Liganden ausgetauscht werden. Systematische Analysen wie Thermogravimetrie (thermogravimetric analysis TGA), Massenspektrometrie (MS) und Protonen-Kernmagnetresonanz (proton nuclear magnetic resonance 1H-NMR) zeigen direkt den Zusammenhang zwischen Oberflächenliganden und QD-LEDs. Kapitel 5 zeigt den Zusammenhang zwischen der Materialstabilität von QDs und der Bauteilstabilität von QD-LEDs durch Untersuchung der Oberflächenchemie und der Schalendicke. In typischen kolloidalen III-V-InP-QDs wird eine anorganische ZnS-Außenhülle auf den InP Kern aufgetragen, um Stabilität zu gewährleisten. In dieser Arbeit wird jedoch eine schnellere Photodegradation von InP/ZnSe/ZnS-QDs mit einer dickeren statt einer dünneren ZnS-Schale gezeigt, wenn 1-Oktanthiol als Schwefelquelle zur Bildung der äußersten ZnS-Schale verwendet wurde. 1-Oktanthiol induziert die Bildung eines schwach gebundenen Carboxylatliganden durch Protonentransfer auf der QD-Oberfläche, was zu einem schnelleren Abbau unter UV-Licht trotz dickerer ZnS-Schale führt. Detailliertere Einblicke in die Oberflächenchemie werden durch 1H-NMR, TGA und MS gewonnen. Überraschenderweise zeigen jedoch die Lebensdauern der aus InP/ZnSe/ZnS-QDs mit dicken oder dünnen ZnS-Hüllen hergestellten EL-Bauelemente eine gegenteilige Stabilität: Die QD-LEDs mit QDs mit dicker ZnS-Hülle haben eine längere Lebensdauer, als jene mit dünner ZnS-Hülle. Es wird der Degradationsmechanismus der QDs und der QD-Leuchtdioden anhand der Ergebnisse erläutert und der Effekt auf die unterschiedlichen Lebensdauern von Material und Bauteil diskutiert. In Kapitel 6 wird eine Methode vorgeschlagen, wie die Druckbarkeit von QD-Tintenformulierungen beim EHD-Jet-Druck über die QD-Materialien verbessert werden kann. Dazu werden InP-QDs mit GaP-Zwischenschalen erweitert, um die Oberflächenladung zu beeinflussen. Darüber hinaus verbessern GaP-Zwischenschalen in III-V kolloidalen InP-QDs deren thermische Stabilität und PL-QY im Falle von Typ-I-Kern/Schale/Schale-Heterostrukturen (InP/GaP/ZnSeS-QDs). Diese stark lumineszierenden InP/GaP/ZnSeS-QDs wurden synthetisiert und für den EHD-Jet-Druck verwendet. Nicht umgesetzte Ga und Cl-Ionen auf der QD-Oberfläche reduzieren die benötigte Betriebsspannung zur Ausbildung eines Taylor-Kegels und eines stabilen Tinten-Jets. Dieses Ergebnis deutet darauf hin, dass die Oberflächenladungen der Quantenpunkte eine wichtige Rolle bei der Ausbildung des Taylor-Kegels spielen. Mittels Zeta-Potenzial-Messung von QD-Tinten wurde eine industriell erprobte und einfache Methode zur Untersuchung der Oberflächenladungen verwendet. Darüber hinaus wurde optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma (inductively coupled plasma-atomic emission spectroscopy ICP-OES) zur Bestimmung der Elementzusammensetzung durchgeführt. Diese Dissertation beschäftigt sich sowohl mit der Synthese von hocheffizienten InP QDs mit schmalbandiger Emission (full width at half maximum FWHM), als auch den Zusammenhängen zwischen QD-Material und QD-Bauelementen. Die Ergebnisse sind einerseits relevant für die breitere industrielle Anwendung dieser Materialien und andererseits für ein tieferes chemisch-physikalisches, theoretisches und experimentelles Verständnis der Prozesse, die zu langlebigen und stabilen Bauelementen führen. KW - colloidal quantum dot KW - Cu doped InP KW - surface chemistry KW - QD stability KW - QD device KW - kolloidaler Quantenpunkt KW - Cu-dotiertes InP KW - Oberflächenchemie KW - QD-Stabilität KW - QD-Gerät Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585351 ER - TY - THES A1 - Lepre, Enrico T1 - Nitrogen-doped carbonaceous materials for energy and catalysis N2 - Facing the environmental crisis, new technologies are needed to sustain our society. In this context, this thesis aims to describe the properties and applications of carbon-based sustainable materials. In particular, it reports the synthesis and characterization of a wide set of porous carbonaceous materials with high nitrogen content obtained from nucleobases. These materials are used as cathodes for Li-ion capacitors, and a major focus is put on the cathode preparation, highlighting the oxidation resistance of nucleobase-derived materials. Furthermore, their catalytic properties for acid/base and redox reactions are described, pointing to the role of nitrogen speciation on their surfaces. Finally, these materials are used as supports for highly dispersed nickel loading, activating the materials for carbon dioxide electroreduction. N2 - Angesichts der Umweltkrise werden neue Technologien benötigt, um unsere Gesellschaft zu erhalten. In diesem Zusammenhang zielt diese Arbeit darauf ab, die Eigenschaften und Anwendungen von nachhaltigen Materialien auf Kohlenstoffbasis zu untersuchen. Insbesondere wird über die Synthese und Charakterisierung eines breiten Spektrums poröser, kohlenstoffhaltiger Materialien berichtet, welche einen hohen Stickstoffgehalt, besitzen und aus Nukleobasen gewonnen werden. Diese Materialien werden als Kathoden für Li-Ionen-Kondensatoren verwendet, wobei der Schwerpunkt auf der Kathodenherstellung liegt und die Oxidationsbeständigkeit, der aus Nukleobasen gewonnenen Materialien, hervorgehoben wird. Darüber hinaus werden ihre katalytischen Eigenschaften für Säure/Base- und Redoxreaktionen beschrieben, wobei die Rolle der Speziierung des Stickstoffs auf ihren Oberflächen hervorgehoben wird. Schließlich werden diese Materialien als Träger für eine hochdisperse Beladung mit Nickel verwendet, wodurch die Materialien für die Kohlendioxid Elektroreduktion aktiviert werden. KW - heteroatom-doped carbons KW - heteroatom-dotierte Kohlenstoffe KW - porous materials KW - poröse Materialien KW - salt melt templating KW - Salzschmelze-Templating KW - heterogeneous catalysis KW - heterogene Katalyse KW - single-atom catalysis KW - Einzelatomkatalyse KW - Li-ion capacitor KW - Li-Ionen-Kondensator Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577390 ER - TY - THES A1 - Simsek, Ibrahim T1 - Ink-based preparation of chalcogenide perovskites as thin films for PV applications T1 - Präparation von Chalkogeniden Perowskiten auf Basis von molekularer Tinte als Dünnschichten für PV Anwendungen N2 - The increasing demand for energy in the current technological era and the recent political decisions about giving up on nuclear energy diverted humanity to focus on alternative environmentally friendly energy sources like solar energy. Although silicon solar cells are the product of a matured technology, the search for highly efficient and easily applicable materials is still ongoing. These properties made the efficiency of halide perovskites comparable with silicon solar cells for single junctions within a decade of research. However, the downside of halide perovskites are poor stability and lead toxicity for the most stable ones. On the other hand, chalcogenide perovskites are one of the most promising absorber materials for the photovoltaic market, due to their elemental abundance and chemical stability against moisture and oxygen. In the search of the ultimate solar absorber material, combining the good optoelectronic properties of halide perovskites with the stability of chalcogenides could be the promising candidate. Thus, this work investigates new techniques for the synthesis and design of these novel chalcogenide perovskites, that contain transition metals as cations, e.g., BaZrS3, BaHfS3, EuZrS3, EuHfS3 and SrHfS3. There are two stages in the deposition techniques of this study: In the first stage, the binary compounds are deposited via a solution processing method. In the second stage, the deposited materials are annealed in a chalcogenide atmosphere to form the perovskite structure by using solid-state reactions. The research also focuses on the optimization of a generalized recipe for a molecular ink to deposit precursors of chalcogenide perovskites with different binaries. The implementation of the precursor sulfurization resulted in either binaries without perovskite formation or distorted perovskite structures, whereas some of these materials are reported in the literature as they are more favorable in the needle-like non-perovskite configuration. Lastly, there are two categories for the evaluation of the produced materials: The first category is about the determination of the physical properties of the deposited layer, e.g., crystal structure, secondary phase formation, impurities, etc. For the second category, optoelectronic properties are measured and compared to an ideal absorber layer, e.g., band gap, conductivity, surface photovoltage, etc. N2 - Der stetig wachsende Energieverbrauch in der aktuellen technologischen Ära und die kürzliche Entscheidung der Politik auf Nuklearenergie zu verzichten hat die Menschheit dazu geleitet sich auf alternative umweltfreundliche Energiequellen wie Solare Energie zu fokussieren. Obwohl Silizium Solarzellen das Produkt einer ausgereiften Technologie sind geht die Suche nach hocheffizienten Materialien, die einfach umzusetzen sind weiter. Diese Eigenschaften führten zur Vergleichbarkeit von Halogeniden Perowskiten mit Silizium in Einfachsolarzellen innerhalb eines Jahrzehnts der Forschung. Allerdings mangelt es bei Halogeniden Perowskiten an Stabilität und jene stabile haben eine Blei-Toxizität. Andererseits bieten Chalkogenide Perowskite aussichtsreiche Eigenschaften als Absorber Materialien für den Photovoltaik Markt auf Grund des hohen Vorkommens der Elemente auf dem Planeten und ihrer chemischen Stabilität in Luft. Auf der Suche nach dem ultimativen Absorber Material für Solarzellen könnte sich eine Kombination der guten optoelektronischen Eigenschaften von Halogeniden Perowskiten mit der Stabilität von Chalkogeniden als guter Kandidat herausstellen. Infolgedessen untersucht diese Arbeit neue Methoden für die Synthese und das Design dieser neuartigen Chalkogeniden Perowskite, welche Übergangsmetalle als Kationen enthalten, z.B. BaZrS3, BaHfS3, EuZrS3, EuHfS3 and SrHfS3. Es gibt zwei Schritte in den Methoden der Deposition in dieser Untersuchung: Im ersten Schritt werden die binären Verbindungen durch eine Lösungsmittelprozessierung auf dem Substrat aufgebracht. Daraufhin wird im zweiten Schritt das aufgetragene Material in einer Chalkogeniden Atmosphäre getempert, um die Perowskit Struktur durch Festkörperreaktion zu bilden. Die Untersuchung fokussiert sich außerdem auf die Optimierung eines generalisierten Rezeptes für molekulare Tinte zur Deposition eines Präkursors aus unterschiedlichen binären Verbindungen. Die Implementierung der Präkursor Schwefelung führt entweder zu einer Formation der binären Verbindungen ohne Perowskit Struktur oder in der verzerrten Perowskit Struktur, obwohl für manche dieser Materialien laut Literatur die nadelförmige nicht-Perowskit Struktur günstiger sein sollte. Zuletzt gibt es zwei Kategorien für die Evaluierung der hergestellten Materialien: Die erste Kategorie behandelt die Determinierung der physikalischen Eigenschaften der deponierten Dünnschicht, z.B. Kristallstruktur, Sekundärphasen, Unreinheiten. In der zweiten Kategorie werden die optoelektronischen Eigenschaften gemessen und mit einem idealen Absorber verglichen, z.B. Bandlücke, Leitfähigkeit, Oberflächen Photospannung, etc. KW - chalcogenide KW - perovskite KW - Perowskite KW - Chalkogenide Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-572711 ER - TY - JOUR A1 - Figueroa Campos, Gustavo Adolfo A1 - G. K. T. Kruizenga, Johannes A1 - Sagu Tchewonpi, Sorel A1 - Schwarz, Steffen A1 - Homann, Thomas A1 - Taubert, Andreas A1 - Rawel, Harshadrai Manilal T1 - Effect of the post-harvest processing on protein modification in green coffee beans by phenolic compounds JF - Foods : open access journal N2 - The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are denatured and modified via enzymatic and/or redox activation steps. The present study was initiated to encompass changes in the protein fraction. The investigations were limited to major storage protein of green coffee beans. Fourteen Coffea arabica samples from various processing methods and countries were used. Different extraction protocols were compared to maintain the status quo of the protein modification. The extracts contained about 4–8 µg of chlorogenic acid derivatives per mg of extracted protein. High-resolution chromatography with multiple reaction monitoring was used to detect lysine modifications in the coffee protein. Marker peptides were allocated for the storage protein of the coffee beans. Among these, the modified peptides K.FFLANGPQQGGK.E and R.LGGK.T of the α-chain and R.ITTVNSQK.I and K.VFDDEVK.Q of β-chain were detected. Results showed a significant increase (p < 0.05) of modified peptides from wet processed green beans as compared to the dry ones. The present study contributes to a better understanding of the influence of the different processing methods on protein quality and its role in the scope of coffee cup quality and aroma. View Full-Text KW - Arabica coffee KW - coffee processing KW - protein modification KW - bound phenolic compounds KW - peptide biomarkers KW - LC-MS/MS Y1 - 2022 U6 - https://doi.org/10.3390/foods11020159 SN - 2304-8158 VL - 11 PB - MDPI CY - Basel, Schweiz ET - 2 ER - TY - THES A1 - Störmann, Florian Konstantin T1 - Multifunctional Microballoons for the active and passive control of fluid-flows N2 - Functional materials, also called "Smart Materials", are described by their ability to fulfill a desired task through targeted interaction with its environment. Due to this functional integration, such materials are of increased interest, especially in areas where the increasing micronization of components is required. Modern manufacturing processes (e.g. microfluidics) and the availability of a wide variety of functional materials (e.g. shape memory materials) now enable the production of particle-based switching components. This category includes micropumps and microvalves, whose basic function is the active control of liquid flows. One approach in realizing those microcomponents as pursued by this work, enables variable size-switching of water-filled microballoons by implementing a stimulus-sensitive switching motif in the capsule's membrane shell, while being under the influence of a constant driving force. The switching motif with its gatekeeper function has a critical influence on one or more material parameters, which modulate the capsule's resistance against the driving force in microballoon expansion process. The advantage of this concept is that even non-variable analyte conditions, such as concentration levels of ions, can be capitalized to generate external force fields that, under the control of the membrane, cause an inflation of the microballoon by an osmotically driven water influx. In case of osmotic pressure gradients as the driving force for the capsule expansion, material parameters associated with the gatekeeper function are specifically the permeability and the mechanical stiffness of the shell material. While a modulation of the shell permeability could be utilized to kinetically impede the water influx on large time scales, a modulation of the shell's mechanical stiffness even might be utilized to completely prevent the capsule inflation due to a possible non-deformability beneath a certain threshold pressure. In polymer networks, which are a suitable material class for the demanded capsule shell because of their excellent elasticity, both the permeability and the mechanical properties are strongly influenced by the crystallinity of the material. Since the permeability is effectively reduced with increasing crystallinity, while the mechanical stiffness is simultaneously greatly increased, both effects point in the same direction in terms of their functional relationship. For this reason and due to a reversible and contactless modulation of the membrane crystallinity by heat input, crystallites may be suitable switching motifs for controlling the capsule expansion. As second design element of reversible expandable microballoons, the capsule geometry, defined by an aqueous core enveloped by the temperature-sensitive polymer network membrane, should allow an osmotic pressure gradient across the membrane layer. The strength of the inflation pressure and the associated inflation velocity upon membrane melting should be controlled by the salt concentration within the aqueous core, while a turn in the osmotic gradient should furthermore allow the reversible process of capsule deflation. Therefore, it should be possible to build either microvalves and micropumps, while their intended action of either pumping or valving is determined by their state of expansion and the direction of the osmotic pressure gradient.. Microballoons of approximately 300 µm in diameter were formed via droplet-based microfluidics from double-emulsion templates (w/o/w). The elastomeric capsule membrane was formed by photo-crosslinking of methacrylate (MA) functionalized oligo(ε-caprolactone) precursors (≈ 3.8 MA-arms, Mn ≈ 12000 g mol-1) within the organic medium layer (o) via UV-exposure after droplet-formation. After removal of the toluene/chloroform mixture by slow extraction via the continuous aqueous phase, the capsules solidified under the development of a characteristic "mushroom"-like shape at specific experimental conditions (e.g. λ = 308 nm, 57 mJ·s-1·cm-2, 16 min). It could be furthermore shown that in dependency to the process parameters: oligomer concentration and curing-time also spherical capsules were accessible. Long curing-times and high oligomer concentrations at a fixed light-intensity favored the formation of "mushroom"-like capsules, whereas the contrary led to spherical shaped capsules. A comparative study on thin polymer network films of same composition and equal treatment proved a correlation between the film's crosslink density and their contraction capability, while stronger crosslinked polymer networks showed a stronger contraction after solvent removal. In combination with observations during capsule solidification via light-microscopy, where a continuous shaping from almost spherical crosslinked templates to "mushroom"-shaped and solidified capsules was stated, the following mechanism was proposed. In case of low oligomer contents and short curing-times, the contraction of the capsule shell during solvent removal is strongly diminished due to a low degree of crosslinking. Therefore, the solidifying shell could freely collapse onto the aqueous core. In the other case, high oligomer concentrations and long curing-times will favor the formation of highly crosslinked capsule membranes with a strong contraction capability. Due to an observed decentered location of the aqueous core within the swollen polymer network, an uneven radial stress along the capsule's circumference is exerted to the incompressible core. This lead to an uneven contraction during solvent removal and a directed flow of the core fluid into the direction of the minimal stress vector. In consequence, the initially thicker spherical cap contracts, whereas the opposing thinner spherical cap get stretched. The "mushroom"-shape over some advantages over their spherical shaped counterparts, why they were selected for the further experiments. Besides the necessity of a high density of crosslinking for the purpose of extraordinary elasticity and toughness, the form-anisotropy promotes a faster microballoon expandability due to a partial reduction of the membrane thickness. Additionally, pre-stretched regions of thin thickness might provide a better resistance against inflation pressure than spherical but non-stretched capsules of equal membrane thickness. The resulting "mushroom"-shaped microcapsules exhibited a melting point of Tm ≈ 50 - 60 °C and a degree of crystallinity of Xc ≈ 29 - 38 % depending on the membrane thickness and internal salt content, which is slightly lower than for the non-crosslinked oligomer and reasoned by a limited chain mobility upon crosslinking. Nonetheless, the melting transition of the polymer network was associated with a strong drop in its mechanical stiffness, which was shown to have a strong influence on the osmotic driven expansion of the microcapsules. Capsules that were subjected to osmotic pressures between 1.5 and 4.7 MPa did not expand if the temperature was well below the melting point of the capsule's membrane, i.e. at room temperature. In contrast, a continuous expansion, while approaching asymptotically to a final capsule size, was observed if the temperature exceeded the melting point, i.e. 60 °C. Microballoons, which were kept for 56 days at ∆Π = 1.5 MPa and room temperature, did not change significantly in diameter, why the impact of the mechanical stiffness on the expansion behavior is considered to be the greater than the influence of the shell permeability. The time-resolved expansion behavior of the microballoons above their Tm was subsequently modeled, using difusion equations that were corrected for shape anisotropy and elastic restoring forces. A shape-related and expansion dependent pre-factor was used to dynamically address the influence of the shell thickness differences along the circumference on the inflation velocity, whereas the microballoon's elastic contraction upon inflation was rendered by the inclusion of a hyperelastic constitutive model. An important finding resulting from this model was the pronounced increase in inflation velocity compared to hypothetical capsules with a homogeneous shell thickness, which stresses the benefit of employing shape anisotropic balloon-like capsules in this study. Furthermore, the model was able to predict the finite expandability on basis of entropy-elastic recovery forces and strain-hardening effects. A comparison of six different microballoons with different shell thicknesses and internal salt contents showed the linear relationship between the volumetric expansion, the shell thickness and the applied osmotic pressure, as represented by the model. As the proposed model facilitates the prediction of the expansion kinetics depending on the membranes mechanical and diffusional characteristics, it might be a screening tool for future material selections. In course of the microballoon expansion process, capsules of intermediate diameters could be isolated by recrystallization of the membrane, which is mainly caused by a restoration of the membrane's mechanical stiffness and is otherwise difficult to achieve with other stimuli-sensitive systems. The capsule's crystallinity of intermediate expansion states was nearly unchanged, whereas the lamellar crystal size tends to decreased with the expansion ratio. Therefore, it was assumed that the elastic modulus was only minimally altered and might increased due to the networks segment-chain extension. In addition to the volume increase achieved by inflation, a turn in the osmotic gradient also facilitated the reversible deflation, which was shown in inflation/deflation cycles. These both characteristics of the introduced microballoons are important parameter regarding the realization of micropumps and microvalves. The fixation of expanded microcapsules via recrystallization enabled the storage of entropy-elastic strain-energy, which could be utilized for pumping actions in non-aqueous media. Here, the pumping velocity depended on both, the type of surrounding medium and the applied temperature. Surrounding media that supported the fast transport of pumped liquid showed an accelerated deflation, while high temperatures further accelerate the pumping velocity. Very fast rejection of the incorporated payload was furthermore realized with pierced expanded microballoons, which were subjected to temperatures above their Tm. The possible fixation of intermediate particle sizes provide opportunities for vent constructions that allowed the precise adjustment of specific flow-rates and multiple valve openings and closings. A valve construction was realized by the insertion of a single or multiple microballoons in a microfluidic channel. A complete and a partial closing of the microballoon-valves was demonstrated as a function of the heating period. In this context, a difference between the inflation and deflation velocity was stated, summarizing slower expansion kinetics. Overall, microballoons, which presented both on-demand pumping and reversible valving by a temperature-triggered change in the capsule's volume, might be suitable components that help to design fully integrated LOC devices, due to the implementation of the control switch and controllable inflation/deflation kinetics. In comparison to other state of the art stimuli-sensitive materials, one has to highlight the microballoons capability of stabilizing almost continuously intermediate capsule sizes by simple recrystallization of the microballoon's membrane. N2 - Funktionsmaterialien, auch "Smart Materials" genannt, werden durch ihre Fähigkeit, durch die gezielte Interaktion mit seiner Umgebung eine gewünschte Aufgabe zu erfüllen, beschrieben. Aufgrund dieser Funktionsintegration sind solche Materialien vor allem in Bereichen, in denen die zunehmende Mikronisierung von Bauteilen benötigt wird, von gesteigerten Interesse. Moderne Fertigungsverfahren (z..B. Mikrofluidik) und die Verfügbarkeit verschiedenster Funktionsmaterialien (z.B. Formgedächtnismaterialien) ermöglichen heutzutage die Herstellung partikelbasierter Schaltkomponenten. In diese Kategorie fallen unter anderem Mikropumpen und Mikroventile, deren grundsätzliche Funktion die aktive Steuerung von Flüssigkeitsströmen ist. Ein Ansatz zur Realisierung solcher Mikroschalter, der von dieser Arbeit verfolgt wurde, basiert auf wassergefüllten Mikroballons mit einem integrierten stimuli-sensitiven Schaltelement, welche unter dem Einfluss einer konstanten Antriebskraft eine Gröÿenänderung erfahren. Das Schaltmotiv als kontrollierende Instanz entscheidet dabei über die Auswirkung der einwirkenden Kraft auf die Gröÿenänderung durch ihren Einfluss auf einen oder mehrere Materialparameter. Dies ermöglicht die Ausnutzung nicht-variabler Analytbedingungen, wie zum Beispiel Ionenkonzentrationsunterschiede, zur Erzeugung von Kraftfeldern, welche eine Expansion der Mikroballons durch Osmose hervorrufen. Materialparameter welche mit osmotischen Volumenströmen assoziiert sind und diese steuern, sind im Speziellen die Permeabilität und die mechanische Steifigkeit der Kapselmembran. Durch eine Verringerung der Permeabilität kann die Expansionsgeschwindigkeit der Kapseln kinetisch gehemmt und zu langen Zeitperioden hin verschoben werden, wohingegen eine Verstärkung der mechanischen Steifigkeit die Expansion der Kapseln komplett unterbinden kann, indem der angelegte osmotische Druck unterhalb des zur Dehnung notwendigen Schwellendruck liegt.. In Verbindung mit Polymernetzwerken, welche aufgrund ihrer herausragenden Elastizität und Zähfestigkeit eine geeignete Materialklasse für die Herstellung der Kapselmembran darstellen, sind sowohl die Permeabilität als auch die mechanische Steifigkeit mit der Kristallinität des Materials assoziiert. Grundsätzlich kann festgestellt werden, dass die Permeabilität mit der Kristallinität sinkt, wohingegen die Steifigkeit mit ihr steigt. Die Expansion der Kapseln sollte demnach in Abhängigkeit der Kristallinität des Hüllmaterials ermöglicht oder unterbunden werden können, weswegen sich Kristallite als temperatur-sensitive Schaltmotive eignen sollten. Das zweite Designelement von reversibel expandierbaren Mikroballons wird durch die Kapselgeometrie beschrieben, welche sowohl einen wässrigen Kern als auch eine elastomere, semi-permeable Membran aufweist. Diese Kompartimentierung ermöglicht zum einen die Generierung eines osmotischen Druckgradientens zwischen Kapselkern und Umgebung und zum anderen die Erzeugung einer dünnen und umspannenden Polymermembran. Der osmotische Druck als auch die hiermit einhergehende Expansionsgeschwindigkeit nach Aufschmelzen der Kapselmembran sollte durch das Einstellen des Salzgehaltes des Partikelkerns möglich sein. Eine reversible Kapselschrumpfung nach erfolgter Expansion sollte durch Änderungen des äußeren Salzgehaltes zugänglich sein. Auf Basis dieses Konzepts sollten demnach reversibel schaltbare Mikropumpen und Mikroventile realisierbar sein, wobei die Art ihrer Funktion sowohl von ihrem Expansionszustand als auch von der Richtung des osmotischen Druckgradienten abhängt. Die templat-basierte Erzeugung von Mikroballons mit einem Durchmesser von ca. 300 µm erfolgte aus (w/o/w) Doppelemulsionströpfchen mittels Mikrofluidik. Die elastomere Kapselmembran wurde durch Photovernetzung von Methacrylat funktionalisierten oligo(ϵ-caprolacton) Vorläufern (≈ 3.8 MA-Arme, Mn ≈ 12000 g mol-1) aus der organischen Phase (o) und nach Abschluss der Tröpfchenformierung erzeugt. Nach Verfestigung der Kapselmembran durch langsames extrahieren des Lösungsmittelgemisches (Toluol/Chloroform) über die kontinuierliche wässrige Phase, wurden unter bestimmten Reaktionsbedingungen während der Photovernetzung (e.g. λ = 308 nm, 57 mJ·s-1·cm-2, 16 min) formanisotrope "pilzförmige" Mikrokapseln erhalten. Es wurde festgestellt, dass über die Syntheseparameter der Oligomerkonzentration und Belichtungszeit, die Formgebung zwischen kugelförmigen und "pilzförmigen" Kapseln gesteuert werden konnte. Im Fall von niedrigen Oligomerkonzentrationen und kurzen Belichtungszeiten wurden kugelförmige Mikrokapseln und ansonsten "pilzförmige" Kapseln erzeugt. In einer vergleichenden Studie an dünnen Polymernetzwerkfilmen gleicher Zusammensetzung und Behandlung konnte ein Zusammenhang zwischen den beiden Syntheseparametern und der Kontraktilität der Filme bestätigt werden, wobei im Falle höherer Oligomerkonzentrationen und längeren Belichtungszeiten eine stärkere Kontraktion der Filme nach Abdampfen des Lösungsmittelgemisches beobachtet werden konnte. Zusammen mit Beobachtungen eines kontinuierlichen Ausprägens der "Pilzform" von initial annähernd kugelförmigen Kapseln im Laufe des Verfestigungsprozesses mittels Lichtmikroskopie wird folgender Mechanismus der Formausprägung vorgeschlagen. Kapseln mit niedriger Vernetzungsdichte zeigen nur eine geringe Kontraktilität, wodurch das Polymernetzwerk nach Extraktion des Lösungsmittelgemisches frei auf der Kernoberfläche kollabieren kann. Stark vernetzte Kapseln weisen hingegen eine sehr starke Schrumpfung infolge des Lösungsmittelverlustes auf. Aufgrund der nicht mittigen Positionierung des wässrigen Kerns mit Abschluss der Tröpfchenbildung und der darauf ausgebildeten inhomogenen Schichtdickenverteilung ergeben sich unterschiedlich starke radiale Spannungsunterschiede entlang der Membran. Bereiche großer Materialstärke kontrahieren infolge stärker und sorgen für eine Verformung des inkompressiblen wässrigen Kerns in Richtung dünnerer Membransegmente, welche daraufhin gedehnt werden. Nach Abschluss der Membranverfestigung liegen demnach entspannte und stark vorgedehnte Membransegmente vor, die aufgrund der Kristallisation konserviert werden. Die "Pilzform" bietet hinsichtlich der Expansionseigenschaften der Mikroballons einige Vorteile gegenüber ihrem kugelförmigen Pendant, weswegen diese für die weiteren Experimente verwendet wurden. Neben den Anforderung hoher Vernetzungsdichten zum Zwecke der geforderten Elastizität, wird durch die Formanisotropie und der damit verbundenen Schichtdickenunterschiede die Expansionsgeschwindigkeit der Kapseln gesteigert. Weiterhin könnte die Vorstreckung der dünnen Membranschichten eine zusätzliche Stabilität gegenüber dem angelegten osmotischen Drucks aufweisen und somit ein ungewolltes Expandieren unterhalb der Schmelztemperatur erschweren. Die resultierenden "pilzförmigen" Mikroballons wiesen je nach eingestellter Schichtdicke und innerer Salzkonzentration, einen Schmelzpunkt von Tm ≈ 50 - 60 °C und einen Kristallisationsgrad von Xc ≈ 29 - 38 % auf, welche verglichen mit dem unvernetzten PCL Homopolymer geringfügig kleiner waren. Dies liegt zum einen an der erhöhten Anzahl von Kettenenden und zum anderen an der eingeschränkten Kettenmobilität infolge der Oligomervernetzung. Es konnte jedoch weiterhin eine starke Verringerung der mechanischen Steifigkeit nach dem Überschreiten der Schmelztemperatur beobachtet werden. Der große Einfluss der Temperatur auf die Expansion der Mikroballons konnte für mehrere Kapseln bestätigt werden. Kapseln welche einem osmotischen Druck von 1.5 bis 4.7 MPa ausgesetzt waren zeigten keine Größenveränderung bei Raumtemperatur, d.h. weit unterhalb der Schmelztemperatur. Im Gegensatz hierzu wurde eine starke Volumenzunahme aller Kapseln nach dem Überschreiten der Schmelztemperatur, bei 60 °C festgestellt. Mikroballons welche für 56 Tage einem osmotischen Druck von 1.5 MPa bei Raumtemperatur ausgesetzt waren zeigten keine signifikanten Volumenänderungen, weswegen insbesondere der Effekt der mechanischen Erweichung ausschlaggebend für das Schaltprinzip gemacht werden kann. Das zeitaufgelöste Expansionsverhalten der Mikroballons oberhalb ihres Schmelzpunktes wurde daraufhin unter Verwendung von Diffusionsgleichungen, welche für die Formanisotropie und elastische Rückstellkräfte korrigiert wurden, modelliert. Ein formabhängiger Vorfaktor, der die Expansionsgeschwindigkeit in Abhängigkeit der Schichtdickenunterschiede und des Expansionszustandes beschreibt, wurde ebenso eingeführt wie ein Term zur Beschreibung der mechanischen Rückstellkräfte auf Basis eines hyperelastischen Materialmodells. Das Model ermöglichte zum einen eine Beschreibung der endlichen Expandierfähigkeit aufgrund entropie-elastischer Rückstellkräfte sowie aufgrund von Kaltverfestigungen, und zum anderen eine deutliche Beschleunigung des Expandiervorganges aufgrund der Kapselanisotropie. Der Vergleich sechs unterschiedlicher Kapseln mit unterschiedlichen Schichtdicken und inneren Salzgehalten zeigte zudem, in Übereinstimmung mit dem Modell, eine lineare Abhängigkeit von Schichtdicke, osmotischen Druck und der Volumenzunahme. Die mit dem Modell einhergehende Vorhersagemöglichkeit der Expansionskinetik hinsichtlich der mechanischen und diffusionsbedingten Materialcharakteristika stellen somit möglicherweise eine Hilfestellung dar, eine zukünftige Materialauswahl zu treffen. Weiterhin konnte gezeigt werden, dass durch Rekristallisation der Kapselmembran und der damit verbundenen Wiederherstellung der mechanischen Steifigkeit, intermediäre Kapselgrößen isoliert werden konnten, was nach besten Wissen des Standes-der-Technik andernfalls nur schwer zu erreichen ist. Ungeachtet des Expansionsgrades konnten nur geringe Änderungen der Kristallinität festgestellt werden, wohingegen die Kristallgröße mit zunehmender Expansion abnahm. Diesbezüglich wird angenommen dass der Elastizitätsmodulus nur geringfügigen Veränderungen unterliegt oder sogar aufgrund einer Kettenversteifung tendenziell zunimmt. Zusätzlich der Betrachtung einer Volumenzunahme, konnte durch die Änderung des Druckgradienten ebenfalls ein Schrumpfen der Kapseln erreicht werden. Die Reversibilität dieses Prozesses wurde in Expansions/Deflations-Zyklen bestätigt und ist eine wichtige Eigenschaft der Mikroballons hinsichtlich ihrer Verwendung als Mikropumpe und Mikroventil. Die Fixierung expandierter Mikrokapseln durch Rekristallisierung der Membran ermöglichte weiterhin eine Pumpfunktion in nicht-wässrigen Medien. Dabei konnte festgestellt werden, dass die Pumpleistung sowohl von dem umgebenden Medium als auch von der applizierten Temperatur abhingen. Medien, die einen schnellen Abtransport der freigesetzten Flüssigkeit ermöglichten, als auch hohe Temperaturen steigerten hierbei die Pumpleistung. Mikroballons mit einer sehr großen Auswurfleistung konnten durch das Einbringen einer Öffnung in die Membran erzeugt werden. Die Fixierung intermediärer Kapselgrößen ermöglichte Ventilkonstruktionen, welche eine präzise Flussrateneinstellung und ein vielfaches öffnen und Schließen des Ventils ermöglichte. Diese Konstruktionen wurden durch das Einbringen eines oder mehrerer Mikroballons realisiert. Ein teilweises und vollkommenes Schließen dieser Mikroballon-basierten Ventilen wurde mit einem periodischen Versuchsaufbau in Abhängigkeit der Heizperiode gezeigt. Dabei wurden unterschiedliche Expansions- und Deflationskinetiken mit einem schnelleren Schrumpfverhalten bestätigt. Zusammenfassend wurden Mikroballons entwickelt, welche sowohl eine "on-demand" Pumpfunktion als auch eine reversible Ventilfunktion aufweisen. Die Implementierung des Schaltmotives in die Partikelmembran sowie die kontrollierbaren Expansions/Deflationskinetiken machen die Mikroballons gegebenenfalls zu geeigneten Komponenten für hochintegrierbare LOC-Systeme. Im Vergleich zu anderen Stimuli-sensitiven Materialien ist die Möglichkeit der nahezu kontinuierlichen Stabilisierung von intermediärer Partikelgrößen hervorzuheben. Dieses Verhalten wird dabei durch Wechselspiel zwischen Materialeigenschaften und Kapselgeometrie erzeugt. KW - microcapsules KW - expansion KW - stimuli-sensitivity KW - microfluidics KW - polymer network KW - Mikrokapseln KW - expandierbar KW - Stimuli-Sensitivität KW - Mikrofluidik KW - Polymernetzwerk Y1 - 2023 ER - TY - THES A1 - Zhang, Shuhao T1 - Synthesis and self-assembly of protein-polymer conjugates for the preparation of biocatalytically active membranes T1 - Synthese und Selbstassemblierung von Protein/Polymer-Konjugaten für die Herstellung einer biokatalytisch aktiven Membran N2 - This thesis covers the synthesis of conjugates of 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) with suitable polymers and the subsequent immobilization of these conjugates in thin films via two different approaches. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. Conjugation and immobilization renders the enzyme applicable for utilization in a continuously run biocatalytic process which avoids the common problem of product inhibition. Within this thesis, conjugates of DERA and poly(N-isopropylacrylamide) (PNIPAm) for immobilization via a self-assembly approach were synthesized and isolated, as well as conjugates with poly(N,N-dimethylacrylamide) (PDMAA) for a simplified and scalable spray-coating approach. For the DERA/PNIPAm-conjugates different synthesis routes were tested, including grafting-from and grafting-to, both being common methods for the conjugation. Furthermore, both lysines and cysteines were addressed for the conjugation in order to find optimum conjugation conditions. It turned out that conjugation via lysine causes severe activity loss as one lysine plays a key role in the catalyzing mechanism. The conjugation via the cysteines by a grafting-to approach using pyridyl disulfide (PDS) end-group functionalized polymers led to high conjugation efficiencies in the presence of polymer solubilizing NaSCN. The resulting conjugates maintained enzymatic activity and also gained high acetaldehyde tolerance which is necessary for their use later on in an industrial relevant process after their immobilization. The resulting DERA/PNIPAm conjugates exhibited enhanced interfacial activity at the air/water interface compared to the single components, which is an important pre-requisite for the immobilization via the self-assembly approach. Conjugates with longer polymer chains formed homogeneous films on silicon wafers and glass slides while the ones with short chains could only form isolated aggregates. On top of that, long chain conjugates showed better activity maintenance upon the immobilization. The crosslinking of conjugates, as well as their fixation on the support materials, are important for the mechanical stability of the films obtained from the self-assembly process. Therefore, in a second step, we introduced the UV-crosslinkable monomer DMMIBA to the PNIPAm polymers to be used for conjugation. The introduction of DMMIBA reduced the lower critical solution temperature (LCST) of the polymer and thus the water solubility at ambient conditions, resulting in lower conjugation efficiencies and in turn slightly poorer acetaldehyde tolerance of the resulting conjugates. Unlike the DERA/PNIPAm, the conjugates from the copolymer P(NIPAM-co-DMMIBA) formed continuous, homogenous films only after the crosslinking step via UV-treatment. For a firm binding of the crosslinked films, a functionalization protocol for the model support material cyclic olefin copolymer (COC) and the final target support, PAN based membranes, was developed that introduces analogue UV-reactive groups to the support surface. The conjugates immobilized on the modified COC films maintained enzymatic activity and showed good mechanical stability after several cycles of activity assessment. Conjugates with longer polymer chains, however, showed a higher degree of crosslinking after the UV-treatment leading to a pronounced loss of activity. A porous PAN membrane onto which the conjugates were immobilized as well, was finally transferred to a dead end filtration membrane module to catalyze the aldol reaction of the industrially relevant mixture of acetaldehyde and hexanal in a continuous mode. Mono aldol product was detectable, but yields were comparably low and the operational stability needs to be further improved Another approach towards immobilization of DERA conjugates that was followed, was to generate the conjugates in situ by simply mixing enzyme and polymer and spray coat the mixture onto the membrane support. Compared to the previous approach, the focus was more put on simplicity and a possible scalability of the immobilization. Conjugates were thus only generated in-situ and not further isolated and characterized. For the conjugation, PDMAA equipped with N-2-thiolactone acrylamide (TlaAm) side chains was used, an amine-reactive comonomer that can react with the lysine residues of DERA, as well as with amino groups introduced to a desired support surface. Furthermore disulfide formation after hydrolysis of the Tla groups causes a crosslinking effect. The synthesized copolymer poly(N,N-Dimethylacrylamide-co-N-2-thiolactone acrylamide) (P(DMAA-co-TlaAm)) thus serves a multiple purpose including protein binding, crosslinking and binding to support materials. The mixture of DERA and polymer could be immobilized on the PAN support by spray-coating under partial maintenance of enzymatic activity. To improve the acetaldehyde tolerance, the polymer in used was further equipped with cysteine reactive PDS end-groups that had been used for the conjugation as described in the first part of the thesis. The generated conjugates indeed showed good acetaldehyde tolerance and were thus used to be coated onto PAN membrane supports. Post treatment with a basic aqueous solution of H2O2 was supposed to further crosslink the spray-coated film hydrolysis and oxidation of the thiolactone groups. However, a washing off of the material was observed. Optimization is thus still necessary. N2 - Die vorliegende Arbeit beschreibt die Synthese von Konjugaten aus 2-Deoxy-D-ribose-5-phosphat aldolase (DERA) und geeigneten Polymeren sowie deren nachfolgende Immobilisierung in dünnen Filmen mittels zwei verschiedener Herangehensweisen. DERA ist ein Biokatalysator, der in der Lage ist, Acetaldehyd mit einem weiteren Aldehyd zu enantiomerenreinen Mono- und Dihydroxyaldehyden zu verknüpfen. Diese Verbindungen sind wichtige Strukturmotive für eine Reihe von pharmazeutisch aktiven Verbindungen. Konjugation und Immobilisierung machen das Enzym nutzbar für den Einsatz in einem kontinuierlich betriebenen, biokatalytischen Prozess, welcher das bekannte Problem der Produktinhibierung umgeht. In der vorliegenden Arbeit wurden einerseits Konjugate aus DERA und Poly(N-isopropylacrylamid) (PNIPAm) für die Immobilisierung mittels eines Selbstassemblierungsverfahrens synthetisiert und isoliert, sowie andererseits entsprechende Konjugate mit Poly(N,N-dimethylacrylamid) (PDMAA) für ein vereinfachtes und skalierbares Immobilisierungsverfahren mittels Sprühauftrag hergestellt. Für die DERA/PNIPAm-Konjugate wurden verschiedene Syntheserouten getestet, einschließlich grafting-from und grafting-to. Beide Methoden werden standardmäßig für entsprechende Konjugationen eingesetzt. Weiterhin wurden sowohl die Lysine als auch die Cysteine des Enzyms für die Konjugation herangezogen, um optimale Konjugationsbedingungen zu finden. Konjugation über die Lysine verursachte deutliche Aktivitätsverluste, da ein Lysin auch die Schlüsselrolle im katalytischen Mechanismus des Enzyms spielt. Die Konjugation über die Cysteine sowie einen grafting-to-Ansatz unter Nutzung eines entsprechenden Polymers mit cysteinreaktiver Pyridyldisulfid-Endgruppe (PDS) führte zu einer hohen Konjugationseffizienz, sofern polymersolubilisierendes NaSCN eingesetzt wurde. Die resultierenden Konjugate behielten ihre enzymatische Aktivität bei deutlich gesteigerter Toleranz gegenüber Acetaldehyd. Beide Aspekte sind wichtig für den Einsatz des Enzyms in einem industriell relevanten Prozess nach dem Immobilisierungsschritt. Die DERA/PNIPAm-Konjugate zeigten eine erhöhte Oberflächenaktivität im Vergleich zu den Einzelkomponenten, was eine wichtige Voraussetzung für die Immobilisierung über eine Selbstassemblierung darstellt. Konjugate mit relativ langen Polymerketten bildeten nach dem Selbstassemblierungsschritt homogene Filme auf Silizium-Wafern und Glass-Objektträgern während Konjugate mit kurzen Ketten nur isolierte Aggregate bildeten. Darüber hinaus zeigten die Konjugate mit längeren Ketten einen besseren Erhalt der Enzymaktivität im Zuge der Immobilisierung. Die nachträgliche Vernetzung der Konjugate, sowie ihre feste Anbindung an die Trägermaterialien sind wichtige Voraussetzungen für die mechanische Stabilität des aus dem Selbstassemblierungsschritt erhaltenen Films. Aus diesem Grund wurde in einem zweiten Schritt das UV-vernetzbare Monomer DMMIBA in das für die Konjugation vorgesehene, PNIPAm-basierte Polymer eingeführt. Die Einbindung von DMMIBA setzte die untere kritische Lösungstemperatur (LCST) und damit die Löslichkeit des Polymers in Wasser bei Raumtemperatur herab. Dies führte zu niedrigeren Konjugationseffizienzen und damit zu einer etwas schlechteren Acetaldehydtoleranz der resultierenden Konjugate. Anders als im Fall von DERA/PNIPAm, bildeten die mit P(NIPAM-co-DMMIBA) synthetisierten Konjugate einen homogenen Film nur nach Vernetzung mittels UV-Behandlung aus. Für eine feste Anbindung des vernetzten Films wurde ein Funktionalisierungsprotokoll für das Modell-Trägermaterial aus cycloolefinischem Copolymer (COC) und das letztliche Zielmaterial, PAN-basierte Membranen, entwickelt, welches analoge UV-reaktive Gruppen auf der Trägeroberfläche erzeugt. Die auf COC immobilisierten Konjugate bewahrten ihre Enzymaktivität und zeigten eine gute mechanische Stabilität nach mehreren Aktivitäts-Messzyklen. Der Einsatz von Konjugaten mit längeren Polymerketten führte jedoch zu Filmen mit zu hohem Vernetzungsgrad was einen deutlichen Aktivitätsverlust bedingte. Eine poröse, PAN-basierte Membran, auf welcher die Konjugate ebenso immobilisiert wurden, wurde schlussendlich in ein Dead-End-Filtrationsmodul überführt, um die Aldolreaktion eines industriell relevanten Gemisches aus Acetaldehyd und Hexanal in einem kontinuierlich betriebenen Verfahren durchzuführen. Es konnte Monoaldolprodukt detektiert werden, jedoch waren die Ausbeuten vergleichsweise niedrig, während sich die operative Stabilität als verbesserungswürdig erwies. Ein weiterer Immobilisierungsansatz für DERA-Konjugate, beinhaltete die in-situ-Generierung der Konjugate durch einfaches Vermischen von Enzym und Polymer gefolgt von unmittelbaren Auftrag des Materials auf ein Membranträgermaterial mittels Sprühen. Im Vergleich zum ersten Ansatz lag der Fokus hier mehr auf der Einfachheit und prinzipiellen Skalierbarkeit der Immobilisierung. Daher wurden die Konjugate hier nur in-situ erzeugt und nicht weiter isoliert sowie charakterisiert. Für die Konjugation wurde PDMAA herangezogen, welches mit Thiolactongruppen entlang der Seitenkette ausgerüstet ist. Die Thiolactongruppen sind reaktiv gegenüber Aminen und können daher sowohl mit den Lysineinheiten der DERA reagieren als auch mit Aminogruppen, die im Vorfeld auf dem Trägermaterial erzeugt wurden. Darüber hinaus können durch Hydrolyse der Thiolactoneinheiten sowie anschließender Ausbildung von Disulfidbrücken Vernetzungspunkte erzeugt werden. Das hergestellte Copolymer poly(N,N-Dimethylacrylamide-co-N-2-thiolactone acrylamide) (P(DMAA-co-TlaAm) übernimmt daher mehrere Aufgaben einschließlich Proteinbindung, Vernetzung und Anbindung an das Trägermaterial. Mischungen aus DERA und Polymer konnten durch Sprühauftrag auf funktionalisierten PAN-Trägermaterialien unter teilweisem Erhalt der Enzymaktivität immobilisiert werden. Um auch hier die Acetaldehydtoleranz zu verbessern, wurde das Polymer in einem zweiten Schritt wieder mit PDS-Endgruppen ausgerüstet, die schon zuvor im ersten Teil der Arbeit für die Konjugatsynthese mittels grafting-to herangezogen wurden. Die hergestellten Konjugate zeigten eine gute Acetaldehydtoleranz und wurden daher verwendet, um PAN-Membranen zu beschichten. Eine Nachbehandlung mittels einer basischen Wasserstoffperoxidlösung sollte den aufgesprühten Film vernetzen. Im Ergebnis wurde jedoch ein großer Teil des aufgebrachten Materials im Zuge dieses Schritts heruntergewaschen. Eine weitere Optimierung dieses Schritts ist daher noch notwendig. KW - 2-deoxy-D-ribose-5-phoshphate aldolase KW - enzyme immobilization KW - enzymatically active membrane KW - enzyme/polymer conjugate KW - self-assembly Y1 - 2019 ER - TY - THES A1 - Borisova, Dimitriya T1 - Feedback active coatings based on mesoporous silica containers T1 - Rückkopplungsaktive Beschichtungen basierend auf mesoporösen Silika-Behältern N2 - Metalle werden oft während ihrer Anwendung korrosiven Bedingungen ausgesetzt, was ihre Alterungsbeständigkeit reduziert. Deswegen werden korrosionsanfällige Metalle, wie Aluminiumlegierungen mit Schutzbeschichtungen versehen, um den Korrosionsprozess aktiv oder passiv zu verhindern. Die klassischen Schutzbeschichtungen funktionieren als physikalische Barriere zwischen Metall und korrosiver Umgebung und bieten einen passiven Korrosionsschutz nur, wenn sie unbeschädigt sind. Im Gegensatz dazu kann die Korrosion auch im Fall einer Beschädigung mittels aktiver Schutzbeschichtungen gehemmt werden. Chromathaltige Beschichtungen bieten heutzutage den besten aktiven Korrosionsschutz für Aluminiumlegierungen. Aufgrund ihrer Giftigkeit wurden diese weltweit verboten und müssen durch neue umweltfreundliche Schutzbeschichtungen ersetzt werden. Ein potentieller Ersatz sind Schutzbeschichtungen mit integrierten Nano- und Mikrobehältern, die mit ungiftigem Inhibitor gefüllt sind. In dieser Arbeit werden die Entwicklung und Optimierung solcher aktiver Schutzbeschichtungen für die industriell wichtige Aluminiumlegierung AA2024-T3 dargestellt Mesoporöse Silika-Behälter wurden mit dem ungiftigen Inhibitor (2-Mercaptobenzothiazol) beladen und dann in die Matrix anorganischer (SiOx/ZrOx) oder organischer (wasserbasiert) Schichten dispergiert. Zwei Sorten von Silika-Behältern mit unterschiedlichen Größen (d ≈ 80 and 700 nm) wurden verwendet. Diese haben eine große spezifische Oberfläche (≈ 1000 m² g-1), eine enge Porengrößenverteilung mit mittlerer Porenweite ≈ 3 nm und ein großes Porenvolumen (≈ 1 mL g-1). Dank dieser Eigenschaften können große Inhibitormengen im Behälterinneren adsorbiert und gehalten werden. Die Inhibitormoleküle werden bei korrosionsbedingter Erhöhung des pH-Wertes gelöst und freigegeben. Die Konzentration, Position und Größe der integrierten Behälter wurden variiert um die besten Bedingungen für einen optimalen Korrosionsschutz zu bestimmen. Es wurde festgestellt, dass eine gute Korrosionsschutzleistung durch einen Kompromiss zwischen ausreichender Inhibitormenge und guten Barriereeigenschaften hervorgerufen wird. Diese Studie erweitert das Wissen über die wichtigsten Faktoren, die den Korrosionsschutz beeinflussen. Somit wurde die Entwicklung effizienter, aktiver Schutzbeschichtungen ermöglicht, die auf mit Inhibitor beladenen Behältern basieren. N2 - Metals are often used in environments that are conducive to corrosion, which leads to a reduction in their mechanical properties and durability. Coatings are applied to corrosion-prone metals such as aluminum alloys to inhibit the destructive surface process of corrosion in a passive or active way. Standard anticorrosive coatings function as a physical barrier between the material and the corrosive environment and provide passive protection only when intact. In contrast, active protection prevents or slows down corrosion even when the main barrier is damaged. The most effective industrially used active corrosion inhibition for aluminum alloys is provided by chromate conversion coatings. However, their toxicity and worldwide restriction provoke an urgent need for finding environmentally friendly corrosion preventing systems. A promising approach to replace the toxic chromate coatings is to embed particles containing nontoxic inhibitor in a passive coating matrix. This work presents the development and optimization of effective anticorrosive coatings for the industrially important aluminum alloy, AA2024-T3 using this approach. The protective coatings were prepared by dispersing mesoporous silica containers, loaded with the nontoxic corrosion inhibitor 2-mercaptobenzothiazole, in a passive sol-gel (SiOx/ZrOx) or organic water-based layer. Two types of porous silica containers with different sizes (d ≈ 80 and 700 nm, respectively) were investigated. The studied robust containers exhibit high surface area (≈ 1000 m² g-1), narrow pore size distribution (dpore ≈ 3 nm) and large pore volume (≈ 1 mL g-1) as determined by N2 sorption measurements. These properties favored the subsequent adsorption and storage of a relatively large amount of inhibitor as well as its release in response to pH changes induced by the corrosion process. The concentration, position and size of the embedded containers were varied to ascertain the optimum conditions for overall anticorrosion performance. Attaining high anticorrosion efficiency was found to require a compromise between delivering an optimal amount of corrosion inhibitor and preserving the coating barrier properties. This study broadens the knowledge about the main factors influencing the coating anticorrosion efficiency and assists the development of optimum active anticorrosive coatings doped with inhibitor loaded containers. KW - Korrosion KW - Beschichtungen KW - Aluminiumlegierung KW - Silika KW - Nanopartikel KW - mesoporös KW - corrosion KW - coating KW - aluminum alloy KW - silica nanoparticles KW - mesoporous Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63505 ER - TY - THES A1 - Schulte-Osseili, Christine T1 - Vom Monomer zum Glykopolymer T1 - From monomer to glycopolymer BT - Anwendung als Biofunktionalitäten auf Oberflächen und als Transportmoleküle BT - application as biofunctionalized surfaces and transport molecules N2 - Glykopolymere sind synthetische und natürlich vorkommende Polymere, die eine Glykaneinheit in der Seitenkette des Polymers tragen. Glykane sind durch die Glykan-Protein-Wechselwirkung verantwortlich für viele biologische Prozesse. Die Beteiligung der Glykanen in diesen biologischen Prozessen ermöglicht das Imitieren und Analysieren der Wechselwirkungen durch geeignete Modellverbindungen, z.B. der Glykopolymere. Dieses System der Glykan-Protein-Wechselwirkung soll durch die Glykopolymere untersucht und studiert werden, um die spezifische und selektive Bindung der Proteine an die Glykopolymere nachzuweisen. Die Proteine, die in der Lage sind, Kohlenhydratstrukturen selektiv zu binden, werden Lektine genannt. In dieser Dissertationsarbeit wurden verschiedene Glykopolymere synthetisiert. Dabei sollte auf einen effizienten und kostengünstigen Syntheseweg geachtet werden. Verschiedene Glykopolymere wurden durch funktionalisierte Monomere mit verschiedenen Zuckern, wie z.B. Mannose, Laktose, Galaktose oder N-Acetyl-Glukosamin als funktionelle Gruppe, hergestellt. Aus diesen funktionalisierten Glykomonomeren wurden über ATRP und RAFT-Polymerisation Glykopolymere synthetisiert. Die erhaltenen Glykopolymere wurden in Diblockcopolymeren als hydrophiler Block angewendet und die Selbstassemblierung in wässriger Lösung untersucht. Die Polymere formten in wässriger Lösung Mizellen, bei denen der Zuckerblock an der Oberfläche der Mizellen sitzt. Die Mizellen wurden mit einem hydrophoben Fluoreszenzfarbstoff beladen, wodurch die CMC der Mizellenbildung bestimmt werden konnte. Außerdem wurden die Glykopolymere als Oberflächenbeschichtung über „Grafting from“ mit SI-ATRP oder über „Grafting to“ auf verschiedene Oberflächen gebunden. Durch die glykopolymerbschichteten Oberflächen konnte die Glykan Protein Wechselwirkung über spektroskopische Messmethoden, wie SPR- und Mikroring Resonatoren untersucht werden. Hierbei wurde die spezifische und selektive Bindung der Lektine an die Glykopolymere nachgewiesen und die Bindungsstärke untersucht. Die synthetisierten Glykopolymere könnten durch Austausch der Glykaneinheit für andere Lektine adressierbar werden und damit ein weites Feld an anderen Proteinen erschließen. Die bioverträglichen Glykopolymere wären alternativen für den Einsatz in biologischen Prozessen als Transporter von Medikamenten oder Farbstoffe in den Körper. Außerdem könnten die funktionalisierten Oberflächen in der Diagnostik zum Erkennen von Lektinen eingesetzt werden. Die Glykane, die keine selektive und spezifische Bindung zu Proteinen eingehen, könnten als antiadsorptive Oberflächenbeschichtung z.B. in der Zellbiologie eingesetzt werden. N2 - Glycopolymers are synthetic and naturally occurring polymers that carry a gylcan unit in the side chain of the polymer. Glycans are responsible for many biological processes due to the glycn-protein interaction. The involvement of glcans in these biological processes enables the imitation and analysis of interactions by suitable model coumponds, e.g. glycopolymers. This system of glycan-protein interaction will be investigated and studied by glycopolymers in order to demonstrate the specific and selective binding of proteins to glycopolymers. The proteins that are able to selectively bind carbohydrate structures are called lectins. In this dissertation different glycopolymers were synthesized. Care should be taken to ensure an effficient and cost-effective synthesis route. Different glycopolymers were produced by functionalized monomers with different sugars, such as mannose, lactose, galactose or N-acetyl-glucosamine as functional group. From these functionalized glycomonomers, glycopolymers were synthesized via ATRP and RAFT polymerization. The glycopolymers obtained were used as hydrophilic blocks in diblock copolymers and self-assembly in aqueous solution was investigated. In aqueoussolution, the polymers formed micelles in which the sugar block sits on the surface of the micelles. The micelles were loaded with a hydrophobic fluorescent dxe, which made it possible to determine the CMC of micelle formation. In additiom, the glycopolymers were bound to various surfaces as surface coatings via “grafting from” with SI-ATRP or via “grafting to”. Through the glycopolymer-coated surfaces, the glycan-protein interaction could be investigated by spectroscpic measurement methods such as SPR and microring resonators. The specific and selective binding of lectins to the glycopolymers was detected and the binding strength was investigated. The synthesised glycopolymers could become adressable for other lectins by exchanging the glycan unit and thus open up a broad field of other proteins. The biocompatible glycopolymers would be an alternative for use in iological processes as transporters of drugs or dyes into the body. In addtion, the functionalised surfaces could be used in diagnostics for regognition of lectins. The glycan, which do nit bind selectively and specifically to proetins, could be used as anit-adsoptive surface coatings, e.g. in cell biology. KW - Glykopolymere KW - Polymerisation KW - Oberflächenbeschichtung KW - Lektine KW - Glykan-Protein-Wechselwirkung KW - glycopolymers KW - polymerization KW - surface modification KW - lectins KW - glycan-protein interaction Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432169 ER - TY - THES A1 - Ruiz Rodriguez, Janete Lorena T1 - Osmotic pressure effects on collagen mimetic peptides N2 - Collagen is the most abundant protein in mammals. In many tissues, collagen molecules assemble to form a hierarchical structure. In the smallest supramolecular unit, named fibril, each molecule is displaced in the axial direction with respect to its neighbors. This staggering creates a periodic gap and overlap regions, where the gap regions exhibit 20% less density. These fibril-forming collagens play an essential role in the strength of connective tissues. Despite much effort, directed at understanding collagen function and regulation, the influence of the chemical environment on the local structural and mechanical properties remains poorly understood. Recent studies, aimed at elucidating the effect of osmotic pressure, showed that collagen contracts upon water removal. This observation highlights the importance of water for the stabilization and mechanics of the collagen molecule. Using collagen mimetic peptides (CMPs), which fold into triple helical structures reminiscent of natural collagen, the primary goal of this work was to investigate the effect of the osmotic pressure on specific collagen-mimetic sequences. CMPs were used as the model system as they provide sequence control, which is essential for discriminating local from global structural changes and for relating the observed effects to existing knowledge about the full-length collagen molecule. Of specific interest was the structure of individual collagen triple helices as well as their organization into self-assembled higher order structures. These key structural features were monitored with infrared spectroscopy (IR) and synchrotron X-ray scattering, while varying the osmotic pressure. For controlling the osmotic pressure, CMP powder samples were incubated in air of defined relative humidity, ranging from dry conditions to highly “humid”. In addition, to obtain more biologically relevant conditions, the CMPs were measured in ultrapure water and in solutions containing small molecule osmolytes. Using the sequences (Pro-Pro-Gly)10, (Pro-Hyp-Gly)10 and (Hyp-Hyp-Gly)10, it was shown that CMPs with different degrees of proline hydroxylation (Hyp = hydroxyproline) exhibit a sequence-specific response to osmotic pressure. IR spectroscopy revealed that osmotic pressure changes affect the strength of the triple helix stabilizing, interchain hydrogen bond and that the extent of this change depends on the degree of hydroxylation. X-ray scattering experiments further showed that changes in osmotic pressure affect both the molecular length as well as the higher order organization of CMPs. Starting from a pseudo-hexagonal packing in the dry state, all three CMPs showed isotropic swelling when increasing the water content to approximately 1.2 water molecules per amino acid, again to different extents depending on the degree of hydroxylation. When increasing the water content further, this pseudo-hexagonal arrangement breaks down. In the fully hydrated state, each CMP is characterized by its own specific and more complex packing geometry. While these changes in the lateral packing arrangement suggest swelling upon hydration, an overall decrease of the molecular length (i.e. contraction) was observed in the axial direction. Also for this structural feature, a strong dependency on the specific amino acid sequence was found. Interestingly, the observed contraction is the opposite of what has been reported for natural collagen. As (Pro-Pro-Gly)n, (Pro-Hyp-Gly)n and (Hyp-Hyp-Gly)n repeat units are found in collagen with a relatively high abundance, this suggests that other collagen sequence fragments need to respond to hydration in the opposite way to obtain a net elongation of the full-length collagen molecule. To test this hypothesis, sequences predicted to be sensitive to osmotic pressure were considered. One such sequence, consisting of two repeat units (Ala-Arg-Gly-Ser-Asp-Gly), was inserted as a guest into a (Pro-Pro-Gly) host. When compared to the canonical CMP sequences investigated earlier, the lateral helix packing follows a similar trend with increasing hydration; however, the host-guest CMP axially elongates with increasing water content. This behavior is more similar to what has been found for natural collagen and suggests that different sequences do determine the molecular length of collagen sequences differently. Interestingly, the canonical sequences are more abundant in the overlap region while the guest sequence is found in the gap region. This allows to speculate that sequences in the gap and overlap regions possess a specifically fine-tuned local response to osmotic pressure changes. Clearly, more experiments with additional sequences are needed to confirm this. In conclusion, the results obtained in this work indicate a highly sequence specific interaction between collagen and water. Osmotic pressure-induced conformational changes mostly originate from local geometries and bonding patterns and affect both the structure of individual triple helices as well as higher order assemblies. One key remaining question is how these conformational changes affect the local mechanical properties of the collagen molecule. As a first step, the stiffness (persistence length) of full-length collagen was determined using atomic force microscopy. In the future, experimental strategies need to be developed that allow for investigating the mechanical properties of specific collagen sequences, e.g. performing single-molecule force spectroscopy of CMPs. Y1 - 2019 ER -