TY - JOUR A1 - Smith, Taylor A1 - Zotta, Ruxandra-Maria A1 - Boulton, Chris A. A1 - Lenton, Timothy M. A1 - Dorigo, Wouter A1 - Boers, Niklas T1 - Reliability of resilience estimation based on multi-instrument time series JF - Earth System Dynamics N2 - Many widely used observational data sets are comprised of several overlapping instrument records. While data inter-calibration techniques often yield continuous and reliable data for trend analysis, less attention is generally paid to maintaining higher-order statistics such as variance and autocorrelation. A growing body of work uses these metrics to quantify the stability or resilience of a system under study and potentially to anticipate an approaching critical transition in the system. Exploring the degree to which changes in resilience indicators such as the variance or autocorrelation can be attributed to non-stationary characteristics of the measurement process – rather than actual changes in the dynamical properties of the system – is important in this context. In this work we use both synthetic and empirical data to explore how changes in the noise structure of a data set are propagated into the commonly used resilience metrics lag-one autocorrelation and variance. We focus on examples from remotely sensed vegetation indicators such as vegetation optical depth and the normalized difference vegetation index from different satellite sources. We find that time series resulting from mixing signals from sensors with varied uncertainties and covering overlapping time spans can lead to biases in inferred resilience changes. These biases are typically more pronounced when resilience metrics are aggregated (for example, by land-cover type or region), whereas estimates for individual time series remain reliable at reasonable sensor signal-to-noise ratios. Our work provides guidelines for the treatment and aggregation of multi-instrument data in studies of critical transitions and resilience. Y1 - 2023 U6 - https://doi.org/10.5194/esd-14-173-2023 SN - 2190-4987 VL - 14 SP - 173 EP - 183 PB - Copernicus Publications CY - Göttingen ER - TY - JOUR A1 - Tofelde, Stefanie A1 - Bufe, Aaron A1 - Turowski, Jens M. T1 - Hillslope Sediment Supply Limits Alluvial Valley Width JF - AGU Advances N2 - River-valley morphology preserves information on tectonic and climatic conditions that shape landscapes. Observations suggest that river discharge and valley-wall lithology are the main controls on valley width. Yet, current models based on these observations fail to explain the full range of cross-sectional valley shapes in nature, suggesting hitherto unquantified controls on valley width. In particular, current models cannot explain the existence of paired terrace sequences that form under cyclic climate forcing. Paired river terraces are staircases of abandoned floodplains on both valley sides, and hence preserve past valley widths. Their formation requires alternating phases of predominantly river incision and predominantly lateral planation, plus progressive valley narrowing. While cyclic Quaternary climate changes can explain shifts between incision and lateral erosion, the driving mechanism of valley narrowing is unknown. Here, we extract valley geometries from climatically formed, alluvial river-terrace sequences and show that across our dataset, the total cumulative terrace height (here: total valley height) explains 90%–99% of the variance in valley width at the terrace sites. This finding suggests that valley height, or a parameter that scales linearly with valley height, controls valley width in addition to river discharge and lithology. To explain this valley-width-height relationship, we reformulate existing valley-width models and suggest that, when adjusting to new boundary conditions, alluvial valleys evolve to a width at which sediment removal from valley walls matches lateral sediment supply from hillslope erosion. Such a hillslope-channel coupling is not captured in current valley-evolution models. Our model can explain the existence of paired terrace sequences under cyclic climate forcing and relates valley width to measurable field parameters. Therefore, it facilitates the reconstruction of past climatic and tectonic conditions from valley topography. Y1 - 2022 U6 - https://doi.org/10.1029/2021AV000641 SN - 2576-604X PB - American Geophysical Union (AGU); Wiley CY - Hoboken, New Jersey, USA ER - TY - JOUR A1 - Heistermann, Maik A1 - Bogena, Heye A1 - Francke, Till A1 - Güntner, Andreas A1 - Jakobi, Jannis A1 - Rasche, Daniel A1 - Schrön, Martin A1 - Döpper, Veronika A1 - Fersch, Benjamin A1 - Groh, Jannis A1 - Patil, Amol A1 - Pütz, Thomas A1 - Reich, Marvin A1 - Zacharias, Steffen A1 - Zengerle, Carmen A1 - Oswald, Sascha T1 - Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach JF - Earth System Science Data (ESSD) N2 - Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-2501-2022 SN - 1866-3516 VL - 14 SP - 2501 EP - 2519 PB - Copernicus CY - Katlenburg-Lindau ER - TY - JOUR A1 - Jara Muñoz, Julius A1 - Melnick, Daniel A1 - Li, Shaoyang A1 - Socquet, Anne A1 - Cortés-Aranda, Joaquín A1 - Brill, Dominik A1 - Strecker, Manfred T1 - The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology JF - Nature Communications N2 - The first step towards assessing hazards in seismically active regions involves mapping capable faults and estimating their recurrence times. While the mapping of active faults is commonly based on distinct geologic and geomorphic features evident at the surface, mapping blind seismogenic faults is complicated by the absence of on-fault diagnostic features. Here we investigated the Pichilemu Fault in coastal Chile, unknown until it generated a Mw 7.0 earthquake in 2010. The lack of evident surface faulting suggests activity along a partly-hidden blind fault. We used off-fault deformed marine terraces to estimate a fault-slip rate of 0.52 ± 0.04 m/ka, which, when integrated with satellite geodesy suggests a 2.12 ± 0.2 ka recurrence time for Mw~7.0 normal-faulting earthquakes. We propose that extension in the Pichilemu region is associated with stress changes during megathrust earthquakes and accommodated by sporadic slip during upper-plate earthquakes, which has implications for assessing the seismic potential of cryptic faults along convergent margins and elsewhere. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-30754-1 SN - 2041-1723 VL - 13 PB - Springer Nature CY - London ER - TY - JOUR A1 - Kaboth-Bahr, Stefanie A1 - Bahr, André A1 - Stepanek, Christian A1 - Catunda, Maria Carolina Amorim A1 - Karas, Cyrus A1 - Ziegler, Martin A1 - García-Gallardo, Ángela A1 - Grunert, Patrick T1 - Mediterranean heat injection to the North Atlantic delayed the intensification of Northern Hemisphere glaciations JF - Communications Earth & Environment N2 - The intensification of Northern Hemisphere glaciations at the end of the Pliocene epoch marks one of the most substantial climatic shifts of the Cenozoic. Despite global cooling, sea surface temperatures in the high latitude North Atlantic Ocean rose between 2.9–2.7 million years ago. Here we present sedimentary geochemical proxy data from the Gulf of Cadiz to reconstruct the variability of Mediterranean Outflow Water, an important heat source to the North Atlantic. We find evidence for enhanced production of Mediterranean Outflow from the mid-Pliocene to the late Pliocene which we infer could have driven a sub-surface heat channel into the high-latitude North Atlantic. We then use Earth System Models to constrain the impact of enhanced Mediterranean Outflow production on the northward heat transport in the North Atlantic. In accord with the proxy data, the numerical model results support the formation of a sub-surface channel that pumped heat from the subtropics into the high latitude North Atlantic. We further suggest that this mechanism could have delayed ice sheet growth at the end of the Pliocene. Y1 - 2021 U6 - https://doi.org/10.1038/s43247-021-00232-5 SN - 2662-4435 SP - 1 EP - 9 PB - Springer Nature CY - London ER - TY - JOUR A1 - Brendel, Nina A1 - Matzner, Nils A1 - Menzel, Max-Peter T1 - Geographisches Gezwitscher – Analyse von Twitter-Daten als Methode im GW-Unterricht JF - GW-Unterricht N2 - Soziale Medien sind ein wesentlicher Bestandteil des Alltags von Schüler*innen und gleichzeitig zunehmend wichtig in Wirtschaft, Politik und Wissenschaft. Am Beispiel von Twitter zeigt dieser Beitrag, dass soziale Medien im Unterricht auch für die Beantwortung geographischer Fragestellungen verwendet werden können. Hierfür eignen sich Twitter-Daten aufgrund ihrer Georeferenzierung und weiterer interessanter Inhalte besonders. Der Beitrag gibt einen Überblick über die Verwendung von Twitter für sozialwissenschaftliche und humangeographische Fragestellungen und reflektiert die Nutzung von Twitter im Unterricht. Für die Unterrichtspraxis werden Beispiele zu den Themen Braunkohle, Flutereignisse und Raumwahrnehmungen sowie Anleitungen zur Auswertung, Anwendung und Reflexion von Twitter-Analysen vorgestellt. KW - Twitter KW - Soziale Medien KW - Forschungsmethodik KW - Unterrichtsmethoden Y1 - 2021 U6 - https://doi.org/10.1553/gw-unterricht164s72 SN - 2414-4169 SP - 72 EP - 85 PB - Verlag der Österreichischen Akademie der Wissenschaften CY - Wien ER - TY - JOUR A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Beyond Vertical Point Accuracy BT - Assessing Inter-pixel Consistency in 30 m Global DEMs for the Arid Central Andes JF - Frontiers in Earth Science N2 - Quantitative geomorphic research depends on accurate topographic data often collected via remote sensing. Lidar, and photogrammetric methods like structure-from-motion, provide the highest quality data for generating digital elevation models (DEMs). Unfortunately, these data are restricted to relatively small areas, and may be expensive or time-consuming to collect. Global and near-global DEMs with 1 arcsec (∼30 m) ground sampling from spaceborne radar and optical sensors offer an alternative gridded, continuous surface at the cost of resolution and accuracy. Accuracy is typically defined with respect to external datasets, often, but not always, in the form of point or profile measurements from sources like differential Global Navigation Satellite System (GNSS), spaceborne lidar (e.g., ICESat), and other geodetic measurements. Vertical point or profile accuracy metrics can miss the pixel-to-pixel variability (sometimes called DEM noise) that is unrelated to true topographic signal, but rather sensor-, orbital-, and/or processing-related artifacts. This is most concerning in selecting a DEM for geomorphic analysis, as this variability can affect derivatives of elevation (e.g., slope and curvature) and impact flow routing. We use (near) global DEMs at 1 arcsec resolution (SRTM, ASTER, ALOS, TanDEM-X, and the recently released Copernicus) and develop new internal accuracy metrics to assess inter-pixel variability without reference data. Our study area is in the arid, steep Central Andes, and is nearly vegetation-free, creating ideal conditions for remote sensing of the bare-earth surface. We use a novel hillshade-filtering approach to detrend long-wavelength topographic signals and accentuate short-wavelength variability. Fourier transformations of the spatial signal to the frequency domain allows us to quantify: 1) artifacts in the un-projected 1 arcsec DEMs at wavelengths greater than the Nyquist (twice the nominal resolution, so > 2 arcsec); and 2) the relative variance of adjacent pixels in DEMs resampled to 30-m resolution (UTM projected). We translate results into their impact on hillslope and channel slope calculations, and we highlight the quality of the five DEMs. We find that the Copernicus DEM, which is based on a carefully edited commercial version of the TanDEM-X, provides the highest quality landscape representation, and should become the preferred DEM for topographic analysis in areas without sufficient coverage of higher-quality local DEMs. KW - DEM noise KW - Fourier analysis KW - TanDEM-X KW - ASTER GDEM KW - Copernicus DEM KW - WorldDEM KW - SRTM KW - ALOS World 3D Y1 - 2021 U6 - https://doi.org/10.3389/feart.2021.758606 SN - 2296-6463 SP - 1 EP - 24 PB - Frontiers Media CY - Lausanne, Schweiz ER - TY - JOUR A1 - Tofelde, Stefanie A1 - Bernhardt, Anne A1 - Guerit, Laure A1 - Romans, Brian W. T1 - Times Associated With Source-to-Sink Propagation of Environmental Signals During Landscape Transience JF - Frontiers in Earth Science N2 - Sediment archives in the terrestrial and marine realm are regularly analyzed to infer changes in climate, tectonic, or anthropogenic boundary conditions of the past. However, contradictory observations have been made regarding whether short period events are faithfully preserved in stratigraphic archives; for instance, in marine sediments offshore large river systems. On the one hand, short period events are hypothesized to be non-detectable in the signature of terrestrially derived sediments due to buffering during sediment transport along large river systems. On the other hand, several studies have detected signals of short period events in marine records offshore large river systems. We propose that this apparent discrepancy is related to the lack of a differentiation between different types of signals and the lack of distinction between river response times and signal propagation times. In this review, we (1) expand the definition of the term ‘signal’ and group signals in sub-categories related to hydraulic grain size characteristics, (2) clarify the different types of ‘times’ and suggest a precise and consistent terminology for future use, and (3) compile and discuss factors influencing the times of signal transfer along sediment routing systems and how those times vary with hydraulic grain size characteristics. Unraveling different types of signals and distinctive time periods related to signal propagation addresses the discrepancies mentioned above and allows a more comprehensive exploration of event preservation in stratigraphy – a prerequisite for reliable environmental reconstructions from terrestrially derived sedimentary records. KW - signal propagation KW - landscape transience KW - source-to-sink KW - stratigraphy KW - response time Y1 - 2021 U6 - https://doi.org/10.3389/feart.2021.628315 SN - 2296-6463 VL - 9 SP - 1 EP - 26 PB - Frontiers Media CY - Lausanne, Schweiz ER - TY - JOUR A1 - Dvornikov, Yury A1 - Leibman, Marina A1 - Heim, Birgit A1 - Bartsch, Annett A1 - Herzschuh, Ulrike A1 - Skorospekhova, Tatiana A1 - Fedorova, Irina A1 - Khomutov, Artem A1 - Widhalm, Barbara A1 - Gubarkov, Anatoly A1 - Rößler, Sebastian T1 - Terrestrial CDOM in lakes of Yamal Peninsula BT - Connection to lake and lake catchment properties JF - Remote Sensing N2 - In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM) absorption at 440 nm (a(440)(CDOM)) and absorption slope (S300-500) in lakes using field sampling and optical remote sensing data for an area of 350 km(2) in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance) for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a()(CDOM) data from 18 lakes sampled in the field to 356 lakes in the study area (model R-2 = 0.79). Values of a(440)(CDOM) in 356 lakes varied from 0.48 to 8.35 m(-1) with a median of 1.43 m(-1). This a()(CDOM) dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques) in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R-2 = 0.61). Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440)(CDOM) = 5.3 m(-1)). Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440)(CDOM) = 3.8 m(-1)) compared to lakes located on higher terraces. KW - CDOM KW - lakes KW - lake catchments KW - permafrost KW - Yamal KW - remote sensing data Y1 - 2018 U6 - https://doi.org/10.3390/rs10020167 SN - 2072-4292 VL - 10 IS - 2 PB - MDPI CY - Basel ER -