TY - CHAP A1 - Walter, R. A1 - Zurita-Heras, J. A1 - Leyder, J.-C. T1 - Probing clumpy stellar winds with a neutron star N2 - INTEGRAL tripled the number of super-giant high-mass X-ray binaries (sgHMXB) known in the Galaxy by revealing absorbed and fast transient (SFXT) systems. Quantitative constraints on the wind clumping of massive stars can be obtained from the study of the hard X-ray variability of SFXT. A large fraction of the hard X-ray emission is emitted in the form of flares with a typical duration of 3 ksec, frequency of 7 days and luminosity of $10^{36}$ erg/s. Such flares are most probably emitted by the interaction of a compact object orbiting at $\sim10~R_*$ with wind clumps ($10^{22 ... 23}$ g) representing a large fraction of the stellar mass-loss rate. The density ratio between the clumps and the inter-clump medium is $10^{2 ... 4}$. The parameters of the clumps and of the inter-clump medium, derived from the SFXT flaring behavior, are in good agreement with macro-clumping scenario and line-driven instability simulations. SFXT are likely to have larger orbital radius than classical sgHMXB. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18024 ER -