TY - RPRT A1 - Nastansky, Andreas A1 - Siris, Sarah T1 - Risikoverbund zwischen Banken und Staaten BT - eine empirische Analyse für den Euroraum T2 - Statistische Diskussionsbeiträge N2 - Die Begrenzung systemischer Risiken ist essentieller Bestandteil der neuen internationalen Finanzmarktordnung. Dabei galt es nicht nur die Verflechtung der Banken untereinander, sondern auch die Verbindung zwischen den Staatsfinanzen und der Solvenz der nationalen Bankensysteme (dem sog. Risikoverbund zwischen Staat und Banken) zu durchbrechen. Der Beitrag beleuchtet die Entwicklung der Forderungen gegenüber Staaten in den Bankbilanzen der Euroländer und des Eurosystems im Zeitverlauf sowie den daraus erwachsenden Risiken für die Finanzstabilität. Hierzu werden die Determinanten des Risikoverbunds theoretisch wie empirisch analysiert. Die fiskalische Kapazität der Eurostaaten wird anhand verschiedener Faktoren wie der Verschuldungsquote, dem Leistungsbilanzsaldo und der Kredit-BIP Lücke aufgezeigt; anschließend werden die Strukturen der Bankensysteme im Euroraum untersucht. Im Einzelnen werden die private und staatliche Gesamtverschuldung, die konsolidierte Bankenbilanzsumme und die darin enthaltenen Verbindlichkeiten sowie der Anteil des Bankensektors an der Bruttowertschöpfung in Relation zur Wirtschaftsleistung betrachtet. Außerdem finden NPE-Bestände in den Bankbilanzen sowie die Renditen der emittierten Staatsanleihen und damit in Verbindung stehenden CDS-Spreads Betrachtung. Zusätzlich werden die Konzentration, der Verschuldungsgrad, Liquiditätsziffern sowie länderspezifische Unterschiede in Art und Fristigkeit der Refinanzierung der Bankensektoren abgebildet. Auf Basis der empirischen Befunde werden im Hinblick auf die wechselseitigen Ansteckungseffekte zwischen Banken und Staaten Implikationen für die Finanzmarktregulierung diskutiert. N2 - Limiting systemic risks is an essential part of the new international financial market regulation. The purpose was not only to break the interconnectedness of banks, but also to reduce the link between public finances and the solvency of national banking systems (the so-called sovereign-bank diabolic loop). This article examines the development of sovereign exposures in the bank balance sheets of the euro countries and the Eurosystem over time and the resulting risks to financial stability. To this end, the determinants of the risk network are analysed both theoretically and empirically. The fiscal capacity of the euro countries is checked on the basis of various factors such as the debt ratio, the current account balance and the credit-GDP gap; the structures of the banking systems in the euro area are then examined. Specifically, total private and public debt, the consolidated banking balance sheet total and the liabilities contained therein as well as the share of the banking sector in gross value added in relation to economic output are evaluated. NPE holdings in bank balance sheets as well as the yields on government bonds issued and the associated CDS spreads are also analysed. Moreover, concentration, leverage ratio, liquidity ratios and country-specific differences in the type and maturity of refinancing in the banking sectors are studied. Based on the empirical findings, implications for the financial market regulation are discussed with regard to the reciprocal contagion effects between banks and states. T3 - Statistische Diskussionsbeiträge - 56 KW - banking KW - fiscal capacity KW - public debt KW - sovereign exposure KW - systemic risk KW - Banken KW - fiskalische Kapazität KW - Staatsanleihen KW - Staatsverschuldung KW - systemisches Risiko Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-619891 VL - 56 ER - TY - THES A1 - Schifferle, Lukas T1 - Optical properties of (Mg,Fe)O at high pressure T1 - Optische Eigenschaften von (Mg,Fe)O unter Hochdruck N2 - Large parts of the Earth’s interior are inaccessible to direct observation, yet global geodynamic processes are governed by the physical material properties under extreme pressure and temperature conditions. It is therefore essential to investigate the deep Earth’s physical properties through in-situ laboratory experiments. With this goal in mind, the optical properties of mantle minerals at high pressure offer a unique way to determine a variety of physical properties, in a straight-forward, reproducible, and time-effective manner, thus providing valuable insights into the physical processes of the deep Earth. This thesis focusses on the system Mg-Fe-O, specifically on the optical properties of periclase (MgO) and its iron-bearing variant ferropericlase ((Mg,Fe)O), forming a major planetary building block. The primary objective is to establish links between physical material properties and optical properties. In particular the spin transition in ferropericlase, the second-most abundant phase of the lower mantle, is known to change the physical material properties. Although the spin transition region likely extends down to the core-mantle boundary, the ef-fects of the mixed-spin state, where both high- and low-spin state are present, remains poorly constrained. In the studies presented herein, we show how optical properties are linked to physical properties such as electrical conductivity, radiative thermal conductivity and viscosity. We also show how the optical properties reveal changes in the chemical bonding. Furthermore, we unveil how the chemical bonding, the optical and other physical properties are affected by the iron spin transition. We find opposing trends in the pres-sure dependence of the refractive index of MgO and (Mg,Fe)O. From 1 atm to ~140 GPa, the refractive index of MgO decreases by ~2.4% from 1.737 to 1.696 (±0.017). In contrast, the refractive index of (Mg0.87Fe0.13)O (Fp13) and (Mg0.76Fe0.24)O (Fp24) ferropericlase increases with pressure, likely because Fe Fe interactions between adjacent iron sites hinder a strong decrease of polarizability, as it is observed with increasing density in the case of pure MgO. An analysis of the index dispersion in MgO (decreasing by ~23% from 1 atm to ~103 GPa) reflects a widening of the band gap from ~7.4 eV at 1 atm to ~8.5 (±0.6) eV at ~103 GPa. The index dispersion (between 550 and 870 nm) of Fp13 reveals a decrease by a factor of ~3 over the spin transition range (~44–100 GPa). We show that the electrical band gap of ferropericlase significantly widens up to ~4.7 eV in the mixed spin region, equivalent to an increase by a factor of ~1.7. We propose that this is due to a lower electron mobility between adjacent Fe2+ sites of opposite spin, explaining the previously observed low electrical conductivity in the mixed spin region. From the study of absorbance spectra in Fp13, we show an increasing covalency of the Fe-O bond with pressure for high-spin ferropericlase, whereas in the low-spin state a trend to a more ionic nature of the Fe-O bond is observed, indicating a bond weakening effect of the spin transition. We found that the spin transition is ultimately caused by both an increase of the ligand field-splitting energy and a decreasing spin-pairing energy of high-spin Fe2+. N2 - Geodynamische Prozesse werden von den physikalischen Materialeigenschaften unter den extremen Druck- und Temperaturbedingungen des Erdinneren gesteuert, gerade diese Areale sind aber faktisch nicht für direkte Beobachtungen zugänglich. Umso wichtiger ist es, die physikalischen Eigenschaften unter Bedingungen des Erdinneren zu untersuchen. Mit diesem Ziel vor Augen erlaubt das Studium der optischen Eigenschaften von Mineralen des Erdmantels, eine große Bandbreite an physikalischen Materialeigenschaften, in einer einfachen, reproduzierbaren und effizienten Art und Weise zu bestimmen. Dadurch bieten sich wichtige Einblicke in die physikalischen Prozessen des Erdinneren. Die vorliegende Arbeit konzentriert sich auf das System Mg-Fe-O, im Speziellen auf Periklas (MgO) und seine Eisen-haltige Variante Ferroperiklas ((Mg,Fe)O), ein wichtiger Baustein planetarer Körper. Das Hauptziel der Arbeit besteht darin Verbindungen zwischen optischen Eigenschaften und physikalischen Materialeigenschaften zu finden. Gerade der Spin-Übergang in Ferroperiklas, der zweithäufigsten Phase des unteren Erdmantels, ist dabei von Bedeutung, da damit Veränderungen in den physikalischen Materialeigenschaften einhergehen. Obwohl sich der Spinübergangsbereich vermutlich bis zur Kern-Mantel-Grenze erstreckt, sind die Auswirkungen des gemischten Spin-Zustandes, bei dem sowohl Hoch- als auch Tief-Spin präsent sind, nur unzureichend untersucht. Die hier vorgestellten Studien zeigen, wie optische Eigenschaften mit anderen wichtigen physikalischen Eigenschaften wie elektrischer und thermischer Leitfähigkeit, Viskosität oder auch mit der chemischen Bindung verbunden sind. Daraus lässt sich auch ableiten wie der Spin-Übergang in Ferroperiklas diese Eigenschaften beeinflusst. Von Raumbedingungen bis zu ~140 GPa sinkt der Brechungsindex von MgO um ~2.4 % von 1.737 auf 1.696 (±0.017). Im Gegensatz dazu steigt der Brechungsindex von (Mg0.87Fe0.13)O (Fp13) und (Mg0.76Fe0.24)O (Fp24) Ferroperiklas mit dem Druck an. Dies ist auf Fe-Fe Wechselwirkungen zwischen benachbarten Eisenpositionen zurückzuführen, die eine starke Verringerung der Polarisierbarkeit, wie im Falle von reinem MgO mit zunehmender Dichte, behindern. Eine Analyse der Dispersion des Brechungsindexes von MgO (Abnahme um ~23 % von 1 Atm zu ~103 GPa) offenbart eine Verbreiterung der Bandlücke von ~7.4 eV bei 1 Atm zu ~8.5 (±0.6) eV bei ~103 GPa. Die Messung der Dispersion (zwischen 550 und 870 nm) in Fp13 zeigt eine starke Abnahme über den Bereich des Spin-Überganges (~44–100 GPa) bis zu einem Faktor von ~3. Die Bandlücke nimmt in der Region des gemischten Spin-Zustandes signifikant auf bis zu ~4.7 eV zu (entspricht einer Zunahme um den Faktor ~1.7). Dies deutet auf eine Verringerung der Elektronen-Mobilität zwischen benachbarten Fe2+-Positionen mit unterschiedlichem Spin-Zustand hin, was die bereits in früheren Arbeiten beobachtete Abnahme der elektrischen Leitfähigkeit im Bereich des gemischten Spin-Zustandes erklärt. Absorptionsspektren an Fp13 zeigen eine Druck-bedingte Zunahme der Kovalenz der Fe-O Bindung für Ferroperiklas im Hoch-Spin Zustand, wohingegen Tief-Spin Ferroperiklas einen Trend zu einer mehr ionischen Fe-O Bindung auf-weist, was auf einen Bindungs-schwächenden Effekt des Spin-Wechsels hinweist. Der Übergang von Hoch- zu Tiefspin ist letztlich auf eine Zunahme der Ligandenfeldaufspaltungsenergie sowie eine abnehmende Spinpaarungsenergie von Hoch-Spin Fe2+ zurückzuführen. KW - optical properties KW - optische Eigenschaften KW - high pressure KW - Hochdruck KW - earth mantle KW - Erdmantel KW - diamond anvil cell KW - Diamantstempelzelle KW - ferropericlase KW - Ferroperiklas KW - spectroscopy KW - Spektroskopie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-622166 ER - TY - THES A1 - Littmann, Daniela-Christin T1 - Large eddy simulations of the Arctic boundary layer around the MOSAiC drift track T1 - Large-Eddy-Simulationen der arktischen Grenzschicht um die MOSAiC-Driftroute N2 - The icosahedral non-hydrostatic large eddy model (ICON-LEM) was applied around the drift track of the Multidisciplinary Observatory Study of the Arctic (MOSAiC) in 2019 and 2020. The model was set up with horizontal grid-scales between 100m and 800m on areas with radii of 17.5km and 140 km. At its lateral boundaries, the model was driven by analysis data from the German Weather Service (DWD), downscaled by ICON in limited area mode (ICON-LAM) with horizontal grid-scale of 3 km. The aim of this thesis was the investigation of the atmospheric boundary layer near the surface in the central Arctic during polar winter with a high-resolution mesoscale model. The default settings in ICON-LEM prevent the model from representing the exchange processes in the Arctic boundary layer in accordance to the MOSAiC observations. The implemented sea-ice scheme in ICON does not include a snow layer on sea-ice, which causes a too slow response of the sea-ice surface temperature to atmospheric changes. To allow the sea-ice surface to respond faster to changes in the atmosphere, the implemented sea-ice parameterization in ICON was extended with an adapted heat capacity term. The adapted sea-ice parameterization resulted in better agreement with the MOSAiC observations. However, the sea-ice surface temperature in the model is generally lower than observed due to biases in the downwelling long-wave radiation and the lack of complex surface structures, like leads. The large eddy resolving turbulence closure yielded a better representation of the lower boundary layer under strongly stable stratification than the non-eddy-resolving turbulence closure. Furthermore, the integration of leads into the sea-ice surface reduced the overestimation of the sensible heat flux for different weather conditions. The results of this work help to better understand boundary layer processes in the central Arctic during the polar night. High-resolving mesoscale simulations are able to represent temporally and spatially small interactions and help to further develop parameterizations also for the application in regional and global models. N2 - Das icosahedral non-hydrostatische large eddy model (ICON-LEM) wurde entlang des Driftweges des Multidisciplinary Observatory Study of the Arctic (MOSAiC) in 2019 und 20 angewendet. Das Modell nutzte horizontale Gitterauflösungen zwischen 100m und 800m auf Gebieten mit Durchmessern von 17.5km und 140 km. An den seitlichen Rändern wurde das Modell mit Analysedaten des Deutschen Wetterdienstes (DWD) angetrieben, welche mit ICON im limited area mode (ICON-LAM) mit einer horizontalen Auflösung von 3km herunterskaliert wurden. Ziel dieser Arbeit war es, die flache atmosphärische Grenzschicht in der zentralen Arktis während des polaren Winters mit einem hochauflösenden mesoskaligen Modell zu untersuchen. Die standardmäßigen Einstellungen in ICON-LEM machen es dem Modell unmöglich, die wechselwirkenden Austauschprozesse in der arktischen Grenzschicht gemäß der MOSAiC Beobachtungen abzubilden. Das implementierte Meereis-Schema in ICON beinhaltet keine Schneeschicht auf dem Meereis, was eine zu große Verzögerung der Meereisoberflächentemperatur auf atmosphärische Veränderungen bewirkt. Um die Meereisfläche schneller auf Änderungen in der Atmosphäre reagieren lassen zu können, wurde die bestehende Meereisparameterisierung in ICON um einen angepasstenWärmekapazitätsterm erweitert. Die angepasste Meereis-Parameterisierung stimmte besser mit den MOSAiC Beobachtungen überein. Allerdings ist die Meereisoberflächentemperatur im Modell aufgrund der fehlerbehafteten einfallenden, langwelligen Strahlung und dem Fehlen komplexer Oberflächenstrukturen im Meereis generell niedriger als beobachtet. Die groß-wirbellige Turbulenz-Schliessung wird der Darstellung der unteren Grenschicht während starker stabiler Schichtung besser gerecht als die Nicht-Wirbel-auflösende Turbulenz-Schließung. Desweiteren reduzierte die Integration der Risse in der Meereisoberfläche die Abweichung der sensiblen Wärme für verschiedene Wetterzustände. Die Ergebnisse dieser Arbeit helfen die Grenzschicht-Prozesse in der zentralen Arktis während der polaren Nacht besser zu verstehen. Hochauflösende mesoskalige Simulationen ermöglichen die Repräsentation zeitlicher und räumlicher klein-skaliger Wechselwirkungen und bestehende Parametrisierungen auch für regionale und globale Modelle weiterzuentwickeln. KW - Arctic KW - atmosphere KW - atmospheric science KW - high resolution KW - boundary layer KW - stable stratification KW - heat flux KW - heat capacity KW - Arktis KW - Atmosphäre KW - Atmosphärenforschung KW - hohe Auflösung KW - Grenzschicht KW - stabile Schichtung KW - Wärmefluss KW - Wärmekapazität Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-624374 ER - TY - THES A1 - Windirsch-Woiwode, Torben T1 - Permafrost carbon stabilisation by recreating a herbivore-driven ecosystem T1 - Stabilisierung von Permafrostkohlenstoff durch die Wiedereinführung eines Herbivor-geprägten Ökosystems N2 - With Arctic ground as a huge and temperature-sensitive carbon reservoir, maintaining low ground temperatures and frozen conditions to prevent further carbon emissions that contrib-ute to global climate warming is a key element in humankind’s fight to maintain habitable con-ditions on earth. Former studies showed that during the late Pleistocene, Arctic ground condi-tions were generally colder and more stable as the result of an ecosystem dominated by large herbivorous mammals and vast extents of graminoid vegetation – the mammoth steppe. Characterised by high plant productivity (grassland) and low ground insulation due to animal-caused compression and removal of snow, this ecosystem enabled deep permafrost aggrad-ation. Now, with tundra and shrub vegetation common in the terrestrial Arctic, these effects are not in place anymore. However, it appears to be possible to recreate this ecosystem local-ly by artificially increasing animal numbers, and hence keep Arctic ground cold to reduce or-ganic matter decomposition and carbon release into the atmosphere. By measuring thaw depth, total organic carbon and total nitrogen content, stable carbon iso-tope ratio, radiocarbon age, n-alkane and alcohol characteristics and assessing dominant vegetation types along grazing intensity transects in two contrasting Arctic areas, it was found that recreating conditions locally, similar to the mammoth steppe, seems to be possible. For permafrost-affected soil, it was shown that intensive grazing in direct comparison to non-grazed areas reduces active layer depth and leads to higher TOC contents in the active layer soil. For soil only frozen on top in winter, an increase of TOC with grazing intensity could not be found, most likely because of confounding factors such as vertical water and carbon movement, which is not possible with an impermeable layer in permafrost. In both areas, high animal activity led to a vegetation transformation towards species-poor graminoid-dominated landscapes with less shrubs. Lipid biomarker analysis revealed that, even though the available organic material is different between the study areas, in both permafrost-affected and sea-sonally frozen soils the organic material in sites affected by high animal activity was less de-composed than under less intensive grazing pressure. In conclusion, high animal activity af-fects decomposition processes in Arctic soils and the ground thermal regime, visible from reduced active layer depth in permafrost areas. Therefore, grazing management might be utilised to locally stabilise permafrost and reduce Arctic carbon emissions in the future, but is likely not scalable to the entire permafrost region. N2 - Mit dem arktischen Boden als riesigem und temperatursensiblen Kohlenstoffspeicher ist die Aufrechterhaltung niedriger Bodentemperaturen und gefrorener Bedingungen zur Verhinde-rung weiterer Kohlenstoffemissionen, die zum globalen Klimawandel beitragen, ein Schlüs-selelement im Kampf der Menschheit, die Erde weiterhin bewohnbar zu halten. Vorangehen-de Studien ergaben, dass die Bodenbedingungen in der Arktis während des späten Pleisto-zäns im Allgemeinen kälter und dadurch stabiler waren, als Ergebnis eines Ökosystems, das von großen pflanzenfressenden Säugetieren und weiten Flächen grasartiger Vegetation do-miniert wurde - der Mammutsteppe. Gekennzeichnet durch hohe Pflanzenproduktivität (Gras-land) und geringe Bodenisolierung aufgrund von Kompression und Schneeräumung durch Tiere, ermöglichte dieses Ökosystem eine tiefreichende Entwicklung des Permafrosts. Heut-zutage, mit der vorherrschenden Tundra- und Strauchvegetation in der Arktis, sind diese Ef-fekte nicht mehr präsent. Es scheint aber möglich, dieses Ökosystem lokal durch künstliche Erhöhung der Tierbestände nachzubilden und somit den arktischen Boden kühl zu halten, um den Abbau von organischem Material und die Freisetzung von Kohlenstoff in die Atmosphäre zu verringern. Durch Messungen der Auftautiefe, des Gesamtgehalts des organischen Kohlenstoffs und Stickstoffs, des stabilen Kohlenstoff-Isotopenverhältnisses, des Radiocarbonalters, der n-Alkan- und Alkoholcharakteristika sowie durch Bestimmung der vorherrschenden Vegetati-onstypen entlang von Beweidungsgradienten in zwei unterschiedlichen arktischen Gebieten habe ich festgestellt, dass die Schaffung ähnlicher Bedingungen wie in der Mammutsteppe möglich sein könnte. Für durch Permafrost beeinflusste Böden konnte ich zeigen, dass eine intensive Beweidung im direkten Vergleich mit unbeweideten Gebieten die Tiefe der Auftau-schicht verringert und zu höheren Gehalten an organischem Kohlenstoff im oberen Bodenbe-reich führt. Für im Winter nur oberflächlich gefrorene Böden konnte kein Anstieg des organi-schen Kohlenstoffgehalts mit zunehmender Beweidungsintensität festgestellt werden, höchstwahrscheinlich aufgrund von Störfaktoren wie vertikalen Wasser- und Kohlenstoffbe-wegungen, die nicht durch eine undurchlässige Schicht wie beim Permafrost begrenzt sind. In beiden Gebieten führte eine hohe Tieraktivität zu einer Umwandlung der Vegetation hin zu artenarmen, von Gräsern dominierten Landschaften mit weniger Sträuchern. Die Analyse von Lipid-Biomarkern ergab, dass das verfügbare organische Material zwar zwischen den Unter-suchungsgebieten unterschiedlich war, aber sowohl in Permafrostgebieten als auch in saiso-nal gefrorenen Böden in Bereichen mit hoher Tieraktivität weniger stark zersetzt war als unter geringerer Beweidungsintensität. Zusammenfassend beeinflusst eine hohe Tieraktivität die Zersetzungsvorgänge in arktischen Böden und das thermische Regime des Bodens, was sich in einer reduzierten Tiefe der Auftauschicht in Permafrostgebieten widerspiegelt. Daher könn-te das Beweidungsmanagement in Zukunft aktiv eingesetzt werden, um den Permafrost lokal zu stabilisieren und gefroren zu halten sowie die Kohlenstoffemissionen in der Arktis zu ver-ringern. Aufgrund der Größe der Fläche, die in der terrestrischen Arktis von Permafrost be-einflusst ist, wird ein solches Beweidungsmanagement aber nicht als Maßnahme auf die ge-samte Permafrostregion ausgedehnt werden können. KW - permafrost KW - carbon KW - climate change KW - grazing KW - Arctic KW - Arktis KW - Kohlenstoff KW - Klimawandel KW - Beweidung KW - Permafrost Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-624240 ER - TY - RPRT A1 - Bruttel, Lisa Verena A1 - Eisenkopf, Gerald A1 - Nithammer, Juri T1 - Pre-election communication in public good games with endogenous leaders T2 - CEPA Discussion Papers N2 - Leadership plays an important role for the efficient and fair solution of social dilemmas but the effectiveness of a leader can vary substantially. Two main factors of leadership impact are the ability to induce high contributions by all group members and the (expected) fair use of power. Participants in our experiment decide about contributions to a public good. After all contributions are made, the leader can choose how much of the joint earnings to assign to herself; the remainder is distributed equally among the followers. Using machine learning techniques, we study whether the content of initial open statements by the group members predicts their behavior as a leader and whether groups are able to identify such clues and endogenously appoint a “good” leader to solve the dilemma. We find that leaders who promise fairness are more likely to behave fairly, and that followers appoint as leaders those who write more explicitly about fairness and efficiency. However, in their contribution decision, followers focus on the leader’s first-move contribution and place less importance on the content of the leader’s statements. T3 - CEPA Discussion Papers - 73 KW - leadership KW - public good KW - voting KW - experiment KW - promises Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-623952 SN - 2628-653X IS - 73 ER - TY - RPRT A1 - Estrin, Saul A1 - Khavul, Susanna A1 - Kritikos, Alexander A1 - Löher, Jonas T1 - Access to digital finance BT - equity crowdfunding across countries and platforms T2 - CEPA Discussion Papers N2 - Financing entrepreneurship spurs innovation and economic growth. Digital financial platforms that crowdfund equity for entrepreneurs have emerged globally, yet they remain poorly understood. We model equity crowdfunding in terms of the relationship between the number of investors and the amount of money raised per pitch. We examine heterogeneity in the average amount raised per pitch that is associated with differences across three countries and seven platforms. Using a novel dataset of successful fundraising on the most prominent platforms in the UK, Germany, and the USA, we find the underlying relationship between the number of investors and the amount of money raised for entrepreneurs is loglinear, with a coefficient less than one and concave to the origin. We identify significant variation in the average amount invested in each pitch across countries and platforms. Our findings have implications for market actors as well as regulators who set competitive frameworks. T3 - CEPA Discussion Papers - 72 KW - equity crowdfunding KW - soft information KW - entrepreneurship KW - finance KW - financial access and inclusion Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-623261 SN - 2628-653X IS - 72 ER - TY - THES A1 - Ketzer, Laura T1 - The impact of stellar activity evolution on atmospheric mass loss of young exoplanets T1 - Der Einfluss der stellaren Aktivitätsentwicklung auf den atmosphärischen Massenverlust von jungen Exoplaneten N2 - The increasing number of known exoplanets raises questions about their demographics and the mechanisms that shape planets into how we observe them today. Young planets in close-in orbits are exposed to harsh environments due to the host star being magnetically highly active, which results in high X-ray and extreme UV fluxes impinging on the planet. Prolonged exposure to this intense photoionizing radiation can cause planetary atmospheres to heat up, expand and escape into space via a hydrodynamic escape process known as photoevaporation. For super-Earth and sub-Neptune-type planets, this can even lead to the complete erosion of their primordial gaseous atmospheres. A factor of interest for this particular mass-loss process is the activity evolution of the host star. Stellar rotation, which drives the dynamo and with it the magnetic activity of a star, changes significantly over the stellar lifetime. This strongly affects the amount of high-energy radiation received by a planet as stars age. At a young age, planets still host warm and extended envelopes, making them particularly susceptible to atmospheric evaporation. Especially in the first gigayear, when X-ray and UV levels can be 100 - 10,000 times higher than for the present-day sun, the characteristics of the host star and the detailed evolution of its high-energy emission are of importance. In this thesis, I study the impact of stellar activity evolution on the high-energy-induced atmospheric mass loss of young exoplanets. The PLATYPOS code was developed as part of this thesis to calculate photoevaporative mass-loss rates over time. The code, which couples parameterized planetary mass-radius relations with an analytical hydrodynamic escape model, was used, together with Chandra and eROSITA X-ray observations, to investigate the future mass loss of the two young multiplanet systems V1298 Tau and K2-198. Further, in a numerical ensemble study, the effect of a realistic spread of activity tracks on the small-planet radius gap was investigated for the first time. The works in this thesis show that for individual systems, in particular if planetary masses are unconstrained, the difference between a young host star following a low-activity track vs. a high-activity one can have major implications: the exact shape of the activity evolution can determine whether a planet can hold on to some of its atmosphere, or completely loses its envelope, leaving only the bare rocky core behind. For an ensemble of simulated planets, an observationally-motivated distribution of activity tracks does not substantially change the final radius distribution at ages of several gigayears. My simulations indicate that the overall shape and slope of the resulting small-planet radius gap is not significantly affected by the spread in stellar activity tracks. However, it can account for a certain scattering or fuzziness observed in and around the radius gap of the observed exoplanet population. N2 - Die steigende Anzahl bekannter Exoplaneten wirft Fragen zu ihrer Demografie und den Mechanismen auf, die Planeten in ihre heutige beobachtete Form bringen. Junge Planeten, die sehr nah um ihren Wirtsstern kreisen, sind extremen Umgebungen ausgesetzt, da der Stern eine hohe magnetische Aktivität aufweist. Das führt wiederum dazu, dass der Planet einer enormen Röntgen- und Extrem-UV-Strahlung ausgesetzt ist. Ist der Planet über einen längeren Zeitraum dieser intensiven photoionisierenden Strahlung ausgesetzt, kann dies dazu führen, dass Planetenatmosphären sich aufheizen, ausdehnen und durch einen hydrodynamischen Entweichungsprozess namens Photoevaporation ins All entweichen, sozusagen verdampfen. Bei Planeten, in der Größenordnung von Super-Erden und Sub-Neptunen, kann dies sogar zur vollständigen Erosion ihrer Ur-Atmosphären führen. Ein interessanter Faktor, der für diesen Massenverlustprozess eine Rolle spielt, ist die Aktivitätsentwicklung des Wirtssterns. Die Rotation eines Sterns, die den Dynamo und damit die magnetische Aktivität antreibt, ändert sich im Laufe der Lebensdauer eines Sterns erheblich. Dies hat einen starken Einfluss auf die Menge der hochenergetischen Strahlung, den ein Planet mit zunehmendem Alter des Sterns empfängt. In jungen Jahren besitzen Planeten noch warme und ausgedehnte Hüllen, was sie besonders anfällig für atmosphärische Verdunstung macht. Insbesondere in den ersten Gigajahren, wenn die Röntgen- und UV-Strahlung 100 - 10,000 Mal höher sein kann als bei der heutigen Sonne, sind die Eigenschaften des Wirtssterns und die detaillierte Entwicklung seiner hochenergetischen Emission von Bedeutung. In dieser Arbeit untersuche ich die Auswirkungen der Entwicklung der stellaren Aktivität auf den durch hochenergetische Strahlung verursachten atmosphärischen Massenverlust junger Exoplaneten. Der PLATYPOS-Code wurde im Rahmen dieser Arbeit entwickelt, um die photoevaporativen Massenverlustraten für verschiedene stellare Alter zu berechnen. Der Code verknüpft parametrisierte Planetenmasse-Radius-Beziehungen mit einem analytischen Modell für den hydrodynamischen Massenverlust. Er wurde zusammen mit Chandra- und eROSITA-Röntgenbeobachtungen dazu verwendet, den zukünftigen Massenverlust der beiden jungen Mehrplanetensysteme V1298 Tau und K2-198 zu untersuchen. Darüber hinaus wurde in einer numerischen Ensemblestudie erstmals der Effekt einer realistischen Verteilung von stellaren Aktivitäts-Tracks auf das sogenannte Radius-Tal bei kleinen Planeten untersucht. Die Arbeiten in dieser Dissertation zeigen, dass für einzelne Systeme, insbesondere wenn die Planetenmassen unbestimmt sind, der Unterschied zwischen einem jungen Wirtsstern, der einem Track mit niedriger Aktivität gegenüber einem solchen mit hoher Aktivität folgt, gravierende Auswirkungen haben kann: Die genaue Form der Aktivitätsentwicklung kann darüber entscheiden, ob ein Planet einen Teil seiner Atmosphäre behält oder seine Hülle vollständig verliert und nur den nackten Gesteinskern behält. Für ein Ensemble von simulierten Planeten ändert eine durch Beobachtungen motivierte Verteilung von Aktivitäts-Tracks die endgültige Radiusverteilung der Planeten nach mehreren Gigajahren nicht wesentlich. Meine Simulationen deuten darauf hin, dass die Form und Steigung des sich ergebenden Radius-Tals bei Kleinplaneten nicht wesentlich von der Streuung der stellaren Aktivitäts-Tracks beeinflusst wird. Eine gewisse Streuung oder Unschärfe im Radius-Tal der beobachteten Exoplanetenpopulation kann damit allerdings durchaus erklärt werden. KW - Exoplaneten KW - star-planet interaction KW - stellar physics KW - exoplanets KW - exoplanet atmospheres KW - Sternphysik KW - Stern-Planeten-Wechselwirkung KW - Exoplanetenatmosphären Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-626819 ER - TY - JOUR A1 - Ullrich, Rebecca A1 - Abramowicz, Isidoro T1 - Ein unbekannter Piyyut für Schabbat aus Reckendorf JF - Genisa-Blätter IV Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-584897 SN - 978-3-86956-539-2 SP - 73 EP - 82 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - THES A1 - Ehlert, Kristian T1 - Simulations of active galactic nuclei feedback with cosmic rays and magnetic fields N2 - The central gas in half of all galaxy clusters shows short cooling times. Assuming unimpeded cooling, this should lead to high star formation and mass cooling rates, which are not observed. Instead, it is believed that condensing gas is accreted by the central black hole that powers an active galactic nuclei jet, which heats the cluster. The detailed heating mechanism remains uncertain. A promising mechanism invokes cosmic ray protons that scatter on self-generated magnetic fluctuations, i.e. Alfvén waves. Continuous damping of Alfvén waves provides heat to the intracluster medium. Previous work has found steady state solutions for a large sample of clusters where cooling is balanced by Alfvénic wave heating. To verify modeling assumptions, we set out to study cosmic ray injection in three-dimensional magnetohydrodynamical simulations of jet feedback in an idealized cluster with the moving-mesh code arepo. We analyze the interaction of jet-inflated bubbles with the turbulent magnetized intracluster medium. Furthermore, jet dynamics and heating are closely linked to the largely unconstrained jet composition. Interactions of electrons with photons of the cosmic microwave background result in observational signatures that depend on the bubble content. Those recent observations provided evidence for underdense bubbles with a relativistic filling while adopting simplifying modeling assumptions for the bubbles. By reproducing the observations with our simulations, we confirm the validity of their modeling assumptions and as such, confirm the important finding of low-(momentum) density jets. In addition, the velocity and magnetic field structure of the intracluster medium have profound consequences for bubble evolution and heating processes. As velocity and magnetic fields are physically coupled, we demonstrate that numerical simulations can help link and thereby constrain their respective observables. Finally, we implement the currently preferred accretion model, cold accretion, into the moving-mesh code arepo and study feedback by light jets in a radiatively cooling magnetized cluster. While self-regulation is attained independently of accretion model, jet density and feedback efficiencies, we find that in order to reproduce observed cold gas morphology light jets are preferred. N2 - Das zentrale Gas in der Hälfte aller Galaxienhaufen weist kurze Kühlzeiten auf. Dies sollte zu hohen Sternentstehungs- und Massenkühlungsraten führen. Bei ungehinderter Kühlung würden jedoch viel mehr Sterne entstehen als beobachtet. Stattdessen wird vermutet, dass das kondensierende Gas durch das zentrale Schwarze Loch akkretiert wird, das einen aktiven Galaxienkerne antreibt, der den Haufen heizt. Der genaue Heizmechanismus ist noch unklar. Ein vielversprechender Mechanismus geht von Protonen der kosmischen Strahlung aus, die an selbst erzeugten magnetischen Fluktuationen, d.h. Alfvénwellen, streuen. Die kontinuierliche Dämpfung der Alfvénwellen heizt das Gas. Für eine große Anzahl von Galaxienhaufen wurden stationäre Lösungen gefunden, bei denen Kühlen durch Alfvénwellenheizen ausgeglichen wird. Um die Modellierungsannahmen zu überprüfen, untersuchen wir die CR-Injektion in magnetohydrodynamischen 3D-Simulationen von Jets in einem idealisierten Cluster mit dem Code arepo. Wir simulieren die Entstehung und Entwicklung von Gasblasen durch energetische Ausflüsse in einer turbulenten, magnetische Atmosphäre. Darüberhinaus ist die Dynamik des Jets und das Heizen eng verknüpft mit der soweit unklaren Zusammensetzung des Jets. DieWechselwirkung von Elektronen mit dem kosmischen Mikrowellenhintergrund führt zu beobachtbaren Signaturen, die vom Inhalt der Blasen abhängen. Diese jüngsten Beobachtungen lieferten Beweise für unterdichte Blasen mit einer relativistischen Füllung, wobei vereinfachende Modellannahmen für die Blasen angenommen wurden. Indem wir die Beobachtungen mit unseren Simulationen reproduzieren, bestätigen wir die Gültigkeit ihrer Modellannahmen und damit die wichtige Erkenntnis, dass Jets eine niedrige (Impuls-)Dichte haben. Außerdem haben die Geschwindigkeits- und Magnetfeldstruktur der Haufenatmosphäre tiefgreifende Auswirkungen auf die Blasenentwicklung und Heizprozesse. Da Geschwindigkeits- und Magnetfelder physikalisch gekoppelt sind, zeigen wir, dass numerische Simulationen dazu beitragen können, die jeweiligen Beobachtungsdaten in direkte Verbindung zu setzen, um sie dadurch besser abschätzen zu können. Schließlich implementieren wir das derzeit bevorzugte Akkretionsmodell, cold accretion, in arepo und untersuchen die Rückkopplung durch leichte Jets in einem explizit kühlenden magnetisierten Haufen. Während die Selbstregulierung unabhängig vom Akkretionsmodell, der Jetdichte und der Jeteffizienz erreicht wird, ist die Morphologie des kalten Gases bei Simulationen mit leichten Jets Beobachtungen am ähnlichsten. T2 - Simulationen vom Heizen von Galaxienhaufen durch aktive Galaxienkerne mit kosmischer Strahlung und Magnetfeldern KW - galaxy clusters KW - intracluster medium KW - active galactic nuclei KW - magnetohydrodynamics KW - cosmic rays KW - Galaxienhaufen KW - aktive Galaxienkerne KW - Magnetohydrodynamik KW - kosmische Strahlung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-578168 ER - TY - THES A1 - De Andrade Queiroz, Anna Barbara T1 - The Milky Way disks, bulge, and bar sub-populations T1 - Die Scheiben, der Bulge und der Balken der Milchstraße Subpopulationen BT - a chemo-dynamical view of our Galaxy in the APOGEE + Gaia era BT - ein chemodynamischer Blick auf unsere Galaxie in der APOGEE + Gaia Ära N2 - In recent decades, astronomy has seen a boom in large-scale stellar surveys of the Galaxy. The detailed information obtained about millions of individual stars in the Milky Way is bringing us a step closer to answering one of the most outstanding questions in astrophysics: how do galaxies form and evolve? The Milky Way is the only galaxy where we can dissect many stars into their high-dimensional chemical composition and complete phase space, which analogously as fossil records can unveil the past history of the genesis of the Galaxy. The processes that lead to large structure formation, such as the Milky Way, are critical for constraining cosmological models; we call this line of study Galactic archaeology or near-field cosmology. At the core of this work, we present a collection of efforts to chemically and dynamically characterise the disks and bulge of our Galaxy. The results we present in this thesis have only been possible thanks to the advent of the Gaia astrometric satellite, which has revolutionised the field of Galactic archaeology by precisely measuring the positions, parallax distances and motions of more than a billion stars. Another, though not less important, breakthrough is the APOGEE survey, which has observed spectra in the near-infrared peering into the dusty regions of the Galaxy, allowing us to determine detailed chemical abundance patterns in hundreds of thousands of stars. To accurately depict the Milky Way structure, we use and develop the Bayesian isochrone fitting tool/code called StarHorse; this software can predict stellar distances, extinctions and ages by combining astrometry, photometry and spectroscopy based on stellar evolutionary models. The StarHorse code is pivotal to calculating distances where Gaia parallaxes alone cannot allow accurate estimates. We show that by combining Gaia, APOGEE, photometric surveys and using StarHorse, we can produce a chemical cartography of the Milky way disks from their outermost to innermost parts. Such a map is unprecedented in the inner Galaxy. It reveals a continuity of the bimodal chemical pattern previously detected in the solar neighbourhood, indicating two populations with distinct formation histories. Furthermore, the data reveals a chemical gradient within the thin disk where the content of 𝛼-process elements and metals is higher towards the centre. Focusing on a sample in the inner MW we confirm the extension of the chemical duality to the innermost regions of the Galaxy. We find stars with bar shape orbits to show both high- and low-𝛼 abundances, suggesting the bar formed by secular evolution trapping stars that already existed. By analysing the chemical orbital space of the inner Galactic regions, we disentangle the multiple populations that inhabit this complex region. We reveal the presence of the thin disk, thick disk, bar, and a counter-rotating population, which resembles the outcome of a perturbed proto-Galactic disk. Our study also finds that the inner Galaxy holds a high quantity of super metal-rich stars up to three times solar suggesting it is a possible repository of old super-metal-rich stars found in the solar neighbourhood. We also enter into the complicated task of deriving individual stellar ages. With StarHorse, we calculate the ages of main-sequence turn-off and sub-giant stars for several public spectroscopic surveys. We validate our results by investigating linear relations between chemical abundances and time since the 𝛼 and neutron capture elements are sensitive to age as a reflection of the different enrichment timescales of these elements. For further study of the disks in the solar neighbourhood, we use an unsupervised machine learning algorithm to delineate a multidimensional separation of chrono-chemical stellar groups revealing the chemical thick disk, the thin disk, and young 𝛼-rich stars. The thick disk is shown to have a small age dispersion indicating its fast formation contrary to the thin disk that spans a wide range of ages. With groundbreaking data, this thesis encloses a detailed chemo-dynamical view of the disk and bulge of our Galaxy. Our findings on the Milky Way can be linked to the evolution of high redshift disk galaxies, helping to solve the conundrum of galaxy formation. N2 - In den letzten Jahrzehnten hat die Astronomie mit großen galaktischen Durchmusterungen einen Boom erlebt. Die dadurch gewonnenen detaillierten Informationen über Millionen von Einzelsternen in der Milchstraße bringen uns der Beantwortung einer der wichtigsten Fragen der Astrophysik einen Schritt näher: Wie entstehen und entwickeln sich Galaxien? Die Milchstraße ist die einzige Galaxie, in der wir viele Sterne in ihre hochdimensionale chemische Zusammensetzung und ihren vollständigen Phasenraum zerlegen können, was analog zu fossilen Aufzeichnungen die Entstehungsgeschichte der Galaxie enthüllen kann. Für kosmologische Modelle ist es von entscheidender Bedeutung, die Prozesse zu verstehen, die zur Bildung großer Strukturen wie der Milchstraße führen; wir nennen diese Studienrichtung Galaktische Archäologie oder Nahfeldkosmologie. Im Mittelpunkt dieser Arbeit stehen die Bemühungen, die Scheiben und den Bulge unserer Galaxie chemisch und dynamisch zu charakterisieren. Die Ergebnisse, die wir in dieser Arbeit vorstellen, waren nur dank des starts des astrometrischen Satelliten Gaia möglich, der das Gebiet der galaktischen Archäologie durch die präzise Messung der Positionen, Parallaxenwinkel und Eigenbewegungen von mehr als einer Milliarde Sterne revolutioniert hat. Ein weiterer, aber nicht minder wichtiger Durchbruch ist die APOGEE-Durchmusterung, die Spektren im nahen Infrarot beobachtet hat, was es uns erlaubt, durch die staubigen Regionen der Milchstraße hindurchzublicken und die chemischen Fingerabdrücke von Hunderttausenden von Sternen zu bestimmen. Um die Struktur der Milchstraße genau darzustellen, verwenden und entwickeln wir das Isochrone-fitting-Tool StarHorse; diese Software kann Sternentfernungen, Aussterbezeiten und Alter vorhersagen, indem sie Astrometrie, Photometrie und Spektroskopie auf der Grundlage von Modellen der Sternentwicklung kombiniert. Der Code StarHorse ist von zentraler Bedeutung für die Berechnung von Entfernungen, bei denen Gaia -Parallaxen allein keine Bestimmung ermöglichen. Wir zeigen, dass wir durch die Kombination von Gaia, APOGEE und StarHorse eine chemische Kartographie der Milchstraßenscheiben von ihrem äußersten bis zum innersten Teil erstellen können. Eine solche Karte ist in der inneren Galaxis beispiellos und zeigt ein bimodales chemisches Muster, das auf zwei Populationen mit unterschiedlichen Entstehungsgeschichten hinweist. Darüber hinaus bestätigen die Daten einen chemischen Gradienten innerhalb der dünnen Scheibe, bei dem der Gehalt an Elementen und Metallen aus 𝛼-Prozessen zum Zentrum hin zunimmt ist. Eine Überdichte in der Anzahl der Sterne bestätigt zudem die Signatur eines Balkens in der inneren Galaxie. Modelle der Galaxienentstehung sagen gewöhnlich deren Beginn im galaktischen Zentrum voraus. Wir konzentrieren uns auf eine Stichprobe in der inneren Galaxie und erwarten, dass wir primordiale stellare Populationen finden. Wir bestätigen die chemische Bimodalität der inneren Galaxie und dass der galaktische Balken sowohl aus Sternen mit hohem als auch mit niedrigem 𝛼 besteht, was darauf hindeutet, dass sich der Balken durch säkulare Evolution gebildet hat, bei der bereits existierende Sterne eingefangen wurden. Durch die Analyse des chemischen Orbitalraums der inneren galaktischen Regionen können wir die verschiedenen Populationen, die diese komplexe Region bewohnen, unterscheiden. Wir zeigen das Vorhandensein einer dünnen Scheibe, einer dicken Scheibe, eines Balkens und einer gegenläufig rotierenden Population, die dem Ergebnis einer gestörten proto-galaktischen Scheibe ähnelt. Unsere Studie zeigt auch, dass die innere Galaxie eine große Menge an supermetallreichen Sternen enthält, die bis zum Dreifachen der solaren Metallizität reichen. Möglicherweise handelt es sich bei der Gruppe alter supermetallreicher Sterne, die in der Sonnenumgebung gefunden wurden um Kandidaten für Migranten aus den innersten Regionen. Wir befassen uns auch mit der komplizierten Aufgabe der Bestimmung individueller Sternalter. Mit StarHorse berechnen wir das Alter von Hauptreihenabzweig- und Unterriesensternen für mehrere öffentliche spektroskopische Durchmusterungen. Wir validieren unsere Ergebnisse, indem wir lineare Abhängigkeiten zwischen den chemischen Häufigkeiten und der Zeit untersuchen, da die 𝛼- und Neutroneneinfang-Elemente empfindlich auf das Alter reagieren, was auf die unterschiedlichen Zeitskalen der Anreicherung dieser Elemente zurückzuführen ist. Zur weiteren Untersuchung der Scheiben in der Sonnenumgebung verwenden wir einen nicht überwachten Algorithmus für maschinelles Lernen, um eine mehrdimensionale Trennung der chrono-chemischen Sterngruppen vorzunehmen. Dies macht die chemisch dicke Scheibe, die dünne Scheibe und junge 𝛼 Sterne erkennbar. Es zeigt sich, dass die dicke Scheibe eine geringe Altersstreuung aufweist, was auf ihre schnelle Entstehung hindeutet, während die dünne Scheibe eine große Altersspanne abdeckt. Mit bahnbrechenden Daten liefert diese Arbeit ein detailliertes chemodynamisches Bild der Scheibe und des Bulge der Galaxis. Unsere Erkenntnisse über die Milchstraße können mit der Entwicklung von Scheibengalaxien mit hoher Rotverschiebung in Verbindung gebracht werden und so zur Lösung des Rätsels der Galaxienbildung beitragen. KW - stars: distances KW - fundamental parameters KW - statistics KW - galaxy: general KW - disc KW - bulge KW - stellar content KW - Bulge KW - Scheibe KW - fundamentale Parameter KW - Galaxie: allgemein KW - Sterne: Entfernungen KW - Statistik KW - stellarer Inhalt Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-590615 ER -