TY - THES A1 - Gassner, Alexandra Carina T1 - The character of the core-mantle boundary : a systematic study using PcP N2 - Assuming that liquid iron alloy from the outer core interacts with the solid silicate-rich lower mantle the influence on the core-mantle reflected phase PcP is studied. If the core-mantle boundary is not a sharp discontinuity, this becomes apparent in the waveform and amplitude of PcP. Iron-silicate mixing would lead to regions of partial melting with higher density which in turn reduces the velocity of seismic waves. On the basis of the calculation and interpretation of short-period synthetic seismograms, using the reflectivity and Gauss Beam method, a model space is evaluated for these ultra-low velocity zones (ULVZs). The aim of this thesis is to analyse the behaviour of PcP between 10° and 40° source distance for such models using different velocity and density configurations. Furthermore, the resolution limits of seismic data are discussed. The influence of the assumed layer thickness, dominant source frequency and ULVZ topography are analysed. The Gräfenberg and NORSAR arrays are then used to investigate PcP from deep earthquakes and nuclear explosions. The seismic resolution of an ULVZ is limited both for velocity and density contrasts and layer thicknesses. Even a very thin global core-mantle transition zone (CMTZ), rather than a discrete boundary and also with strong impedance contrasts, seems possible: If no precursor is observable but the PcP_model /PcP_smooth amplitude reduction amounts to more than 10%, a very thin ULVZ of 5 km with a first-order discontinuity may exist. Otherwise, if amplitude reductions of less than 10% are obtained, this could indicate either a moderate, thin ULVZ or a gradient mantle-side CMTZ. Synthetic computations reveal notable amplitude variations as function of the distance and the impedance contrasts. Thereby a primary density effect in the very steep-angle range and a pronounced velocity dependency in the wide-angle region can be predicted. In view of the modelled findings, there is evidence for a 10 to 13.5 km thick ULVZ 600 km south-eastern of Moscow with a NW-SE extension of about 450 km. Here a single specific assumption about the velocity and density anomaly is not possible. This is in agreement with the synthetic results in which several models create similar amplitude-waveform characteristics. For example, a ULVZ model with contrasts of -5% VP , -15% VS and +5% density explain the measured PcP amplitudes. Moreover, below SW Finland and NNW of the Caspian Sea a CMB topography can be assumed. The amplitude measurements indicate a wavelength of 200 km and a height of 1 km topography, previously also shown in the study by Kampfmann and Müller (1989). Better constraints might be provided by a joined analysis of seismological data, mineralogical experiments and geodynamic modelling. N2 - Unter der Annahme, dass flüssiges Eisen aus dem äußeren Erdkern mit dem festen, silikat-reichen Unteren Mantel reagiert, wird eine Einflussnahme auf die Kern-Mantel Reflexionsphase PcP erwartet. Ist die Kern-Mantel Grenze aufgeweicht, und nicht wie bislang angenommen ein diskreter Übergang, so zeichnet sich dies in der Wellenform und Amplitude von PcP ab. Die Interaktion mit Eisen führt zu teilweise aufgeschmolzenen Bereichen höherer Dichte, welche die seismischen Wellengeschwindigkeiten herabsetzen. Basierend auf den Berechnungen von kurzperiodischen synthetischen Seismogrammen, mittels der Reflektivitäts- und Gauss Beam Methode, soll ein möglicher Modellraum dieser Niedriggeschwindigkeitszonen ermittelt werden. Das Ziel dieser Arbeit ist es das Verhalten von PcP im Distanzbereich von 10° bis 40° unter dem Einfluss dieser Modelle mit diversen Geschwindigkeits- und Dichtekontrasten zu untersuchen. Ferner wird das Auflösungsvermögen hinsichtlich seismischer Daten diskutiert. Entscheidende Parameter wie Anomaliedicke, Quellfrequenz und Topographie werden hierbei analysiert. Tiefe Erdbeben und Kernexplosionen, die sich im entsprechenden Entfernungsbereich zum Gräfenberg und NORSAR Array befinden, werden anschließend im Hinblick auf PcP ausgewertet. Das seismische Auflösungsvermögen von Niedriggeschwindigkeitszonen ist stark begrenzt sowohl in Bezug auf Geschwindigkeits- und Dichtekontraste als auch hinsichtlich der Mächtigkeit. Es besteht sogar die Möglichkeit einer dünnen, globalen Kern-Mantel Übergangszone, selbst mit großen Impedanzkontrasten, ohne dass dies mit seismologischen Methoden detektiert werden könnte: Wird kein precursor zu PcP beobachtet aber das PcPmodel /PcPsmooth Amplitudenverhältnis zeigt gleichzeitig eine Reduktion von mehr als 10%, dann könnte eine sehr dünne Niedriggeschwindigkeitszone von ca. 5 km Mächtigkeit und einer Diskontinuität erster Ordnung vorliegen. Andererseits, ist PcP um weniger als 10% reduziert, könnte dies entweder auf eine dünne, moderate Niedriggeschwindigkeitszone oder einen graduellen Kern-Mantel Übergang hindeuten. Die synthetischen Berechnungen ergeben starke Amplitudenvariationen als Funktion der Distanz, welche auf den Impedanzkontrast zurückzuführen sind. Dabei ergibt sich ein primärer Dichteeffekt im extremen Steilwinkelbereich und ein maßgeblicher Geschwindigkeitseinfluss im Weitwinkelbereich. Im Hinblick auf die modellierten Resultate lässt sich eine 10 - 13.5 km mächtige Niedriggeschwindigkeitszone 600 km südöstlich von Moskau mit einer NW-SE Ausdehnung von mindestens 450 km folgern, wobei eine exakte Aussage über Geschwindigkeiten und Dichte nicht möglich ist. Dies ist im Konsens mit den synthetischen Berechnungen, wonach viele unterschiedliche Modelle ähnliche Amplituden- und Wellenformcharakteristiken erzeugen. Zum Beispiel erklärt ein Modell mit Kontrasten von -5% VP , -15% VS and +5% Dichte die gemessenen PcP Amplituden. Darüber hinaus können unterhalb des südwestlichen Finnlands und nord-nordwestlich des Kaspischen Meeres Undulationen an der Kern-Mantel Grenze selbst vermutet werden. Unter Berücksichtigung früherer Studien, z. B. von Kampfmann and Müller (1989), deuten die Messergebnisse auf eine laterale Topographie von 200 km und eine Höhe von 1 km hin. Eine Eingrenzung der potentiellen Anomaliemodelle kann nur durch eine gemeinsame Auswertung mit mineralogischen Experimenten und geodynamischen Modellierungen erfolgen. KW - Kern-Mantel Grenze KW - Seismologie KW - Ultra-Niedriggeschwindigkeitszonen KW - Steilwinkel-Analyse von PcP KW - Tiefbeben und Kernexplosionen KW - core-mantle boundary KW - seismology KW - ultra-low velocity zones KW - steep-angle analysis of PcP KW - deep earthquakes and nuclear explosions Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63590 ER - TY - THES A1 - Metz, Malte T1 - Finite fault earthquake source inversions T1 - Ausgedehnte Erdbebenquellinversion BT - implementation and testing of a novel physics-based rupture model BT - Implementierung und Validierung eines neuen selbst-ähnlichen Bruchmodels N2 - Earthquake modeling is the key to a profound understanding of a rupture. Its kinematics or dynamics are derived from advanced rupture models that allow, for example, to reconstruct the direction and velocity of the rupture front or the evolving slip distribution behind the rupture front. Such models are often parameterized by a lattice of interacting sub-faults with many degrees of freedom, where, for example, the time history of the slip and rake on each sub-fault are inverted. To avoid overfitting or other numerical instabilities during a finite-fault estimation, most models are stabilized by geometric rather than physical constraints such as smoothing. As a basis for the inversion approach of this study, we build on a new pseudo-dynamic rupture model (PDR) with only a few free parameters and a simple geometry as a physics-based solution of an earthquake rupture. The PDR derives the instantaneous slip from a given stress drop on the fault plane, with boundary conditions on the developing crack surface guaranteed at all times via a boundary element approach. As a side product, the source time function on each point on the rupture plane is not constraint and develops by itself without additional parametrization. The code was made publicly available as part of the Pyrocko and Grond Python packages. The approach was compared with conventional modeling for different earthquakes. For example, for the Mw 7.1 2016 Kumamoto, Japan, earthquake, the effects of geometric changes in the rupture surface on the slip and slip rate distributions could be reproduced by simply projecting stress vectors. For the Mw 7.5 2018 Palu, Indonesia, strike-slip earthquake, we also modelled rupture propagation using the 2D Eikonal equation and assuming a linear relationship between rupture and shear wave velocity. This allowed us to give a deeper and faster propagating rupture front and the resulting upward refraction as a new possible explanation for the apparent supershear observed at the Earth's surface. The thesis investigates three aspects of earthquake inversion using PDR: (1) to test whether implementing a simplified rupture model with few parameters into a probabilistic Bayesian scheme without constraining geometric parameters is feasible, and whether this leads to fast and robust results that can be used for subsequent fast information systems (e.g., ground motion predictions). (2) To investigate whether combining broadband and strong-motion seismic records together with near-field ground deformation data improves the reliability of estimated rupture models in a Bayesian inversion. (3) To investigate whether a complex rupture can be represented by the inversion of multiple PDR sources and for what type of earthquakes this is recommended. I developed the PDR inversion approach and applied the joint data inversions to two seismic sequences in different tectonic settings. Using multiple frequency bands and a multiple source inversion approach, I captured the multi-modal behaviour of the Mw 8.2 2021 South Sandwich subduction earthquake with a large, curved and slow rupturing shallow earthquake bounded by two faster and deeper smaller events. I could cross-validate the results with other methods, i.e., P-wave energy back-projection, a clustering analysis of aftershocks and a simple tsunami forward model. The joint analysis of ground deformation and seismic data within a multiple source inversion also shed light on an earthquake triplet, which occurred in July 2022 in SE Iran. From the inversion and aftershock relocalization, I found indications for a vertical separation between the shallower mainshocks within the sedimentary cover and deeper aftershocks at the sediment-basement interface. The vertical offset could be caused by the ductile response of the evident salt layer to stress perturbations from the mainshocks. The applications highlight the versatility of the simple PDR in probabilistic seismic source inversion capturing features of rather different, complex earthquakes. Limitations, as the evident focus on the major slip patches of the rupture are discussed as well as differences to other finite fault modeling methods. N2 - Erdbebenmodelle sind der Schlüssel zu einem detaillierten Verständnis der zugrunde liegenden Bruchprozesse. Die kinematischen oder dynamischen Brucheigenschaften werden mit Hilfe von ausgedehnten Bruchmodellen bestimmt. Dadurch können Details, wie z.B. die Bruchrichtung und -geschwindigkeit oder die Verschiebungsverteilung, aufgelöst werden. Häufig sind ausgedehnte Bruchmodelle durch sehr viele freie Parameter definiert, etwa individuelle Verschiebungen und Verschiebungsrichtungen auf den diskretisierten Bruchflächenelementen. Die große Anzahl an Parametern sorgt dafür, dass Inversionsprobleme hochgradig unterbestimmt sind. Um daraus resultierende numerische Instabilitäten zu verhinden, werden diese Modelle häufig mit zusätzlichen eher geometrischen als physikalischen Annahmen stabilisiert, z.B. im Bezug auf die Rauigkeit der Verschiebung auf der Bruchfläche. Die Basis für die Inversionsmethode in dieser Dissertaton bildet das von uns entwickelete pseudo-dynamische Bruchmodel (PDR). Die PDR basiert auf wenigen freien Parametern und einer simplen, planaren Geometrie und ergibt eine physik-gestützte Lösung für Erdbebenbrüche. Die PDR bestimmt die instantane Verschiebung basierend auf gegebenen Spannungsänderungen auf der Bruchfläche. Die Randbedingung der Spannungsänderung wird dabei zu jedem Zeitpunkt der Bruchentwicklung über eine Randelementmethode eingehalten. Als Nebenprodukt dessen kann die Herdzeitfunktion an jedem Punkt der Bruchfläche als Ergebnis des Models bestimmt werden, und muss daher nicht vorher definiert werden. Der PDR-Modellierungsansatz wurde mit anderen Modellen anhand verschiedener Erdbeben verglichen. Am Beispiel des Mw 7,1 2016 Kumamoto, Japan, Bebens konnte der Effekt einer gekrümmten Bruchfläche auf die daraus resultierenden Verschiebungsverteilung und Verschiebungsraten durch eine Projezierung der Spannungsvektoren reproduziert werden. Für das Mw 7,5 2018 Palu, Indonesien, Beben haben wir die Bruchausbreitung auf Grundlage der 2D-Eikonalgleichung und basierend auf einem angenommenen linearen Zusammenhang zwischen Bruch- und Scherwellengeschwindigkeit modelliert. Dadurch konnten wir die beobachtete Supershear-Bruchausbreitung als Ergebnis einer möglichen tiefen und daher schnelleren Bruchfront mit einer Abstrahlung an die Erdoberfläche erklären. Der PDR-Vorwärtsmodellierungs-Code wurde in den Open-Source Python Paketen Pyrocko und Grond veröffentlicht. Meine Dissertation beleuchtet drei Aspekte der Erdbebeninversion unter Zuhilfenahme der PDR: (1) Ist eine Implementation eines simplen Bruchmodels mit wenigen Parametern in ein probabalistisches Bayesisches Inversionsprogramm möglich? Kann dies schnelle und robuste Ergebnisse für weitere Folgeanwendungen, wie Bodenbeschleunigungsvorhersagen, liefern? (2) Wie hilft die Kombination aus seismischen Breitband- und Accelerometerdaten mit Nahfelddeformationsdaten, Inversionsergebnisse mit der PDR zu verbessern? (3) Können komplexe Brüche über einen multiplen PDR-Quellinversionsansatz aufgelöst werden und wenn ja, wann ist dies möglich? Ich habe den PDR-Inversionsansatz entwickelt und auf zwei Erdbeben-Sequenzen in verschiedenen tektonischen Umgebungen angewandt. Mit Hilfe von verschiedenen Datensätzen in mehreren Frequenzbändern innerhalb von einfachen und multiplen Bruchflächeninversionen konnte ich das multi-modale Mw 8,2 2021 South Sandwich Erdbeben characterisieren. Dieses bestand aus einem langen, flachen, langsam brechenden Beben entlang der gekrümmten Subduktionszone, welches durch zwei kleinere, tiefere Brüche mit schnelleren Bruchgeschwindigkeiten begrenzt wurde. Die Validierung mit Ergebnissen aus einer P-Wellen Back-Projection, der Clusteranalyse von Nachbeben und einer Tsunami-Modelierung zeigten eine hohe Konsistenz mit den PDR-Resultaten. Die Kombination von seismischen Daten und Oberflächendeformationen in einer multiplen PDR-Inversion habe ich auch zur Analyse eines Beben-Triplets vom Juni 2022 im Südosten des Irans genutzt. Die Inversionen konnten im Zusammenspiel mit relokalisierten Nachbeben einen neuen Fall von vertikaler Haupt-/Nachbebenseparation auflösen. Während die großen Hauptbeben im flachen Sediment stattfanden, sind die Nachbeben hauptsächlich entlang der tieferen Grenzfläche zwischen Sediment und kristallinem Grundgebirge aufgetreten. Eine Erklärung dafür ist das duktile Fließen einer vorhandenen Salzschicht auf der Grenzfläche, ausgelöst durch Spannungsänderungen im Zuge der Hauptbeben. Die Anwendungen konnten die Vielseitigkeit der PDR als simples Quellmodel innerhalb von seismischen Quellinversionen zeigen. Limitierungen der Inversion, wie der augenscheinliche Fokus auf den Hauptverschiebungsbereich eines Bebens, werden in dieser Arbeit genauso diskutiert wie die Einordnung der PDR im Vergleich zu anderen ausgedehnten Quellmodellen. KW - seismology KW - inversion KW - source model KW - Seismologie KW - Inversion KW - Bruchmodel Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-619745 ER -