TY - JOUR A1 - Lange, Markus A1 - Türke, Manfred A1 - Pasalic, Esther A1 - Boch, Steffen A1 - Hessenmöller, Dominik A1 - Müller, Jörg A1 - Prati, Daniel A1 - Socher, Stephanie A. A1 - Fischer, Markus A1 - Weisser, Wolfgang W. A1 - Gossner, Martin M. T1 - Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure JF - Forest ecology and management N2 - Forest management is known to influence species diversity of various taxa but inconsistent or even contrasting effects are reported for arthropods. Regional differences in management as well as differences in regional species pools might be responsible for these inconsistencies, but, inter-regional replicated studies that account for regional variability are rare. We investigated the effect of forest type on the abundance, diversity, community structure and composition of two important ground-dwelling beetle families, Carabidae and Staphylinidae, in 149 forest stands distributed over three regions in Germany. In particular we focused on recent forestry history, stand age and dominant tree species, in addition to a number of environmental descriptors. Overall management effects on beetle communities were small and mainly mediated by structural habitat parameters such as the cover of forest canopy or the plant diversity on forest stands. The general response of both beetle taxa to forest management was similar in all regions: abundance and species richness of beetles was higher in older than in younger stands and species richness was lower in unmanaged than in managed stands. The abundance ratio of forest species-to-open habitat species differed between regions, but generally increased from young to old stands, from coniferous to deciduous stands and from managed to unmanaged stands. The response of both beetle families to dominant tree species was variable among regions and staphylinid richness varied in the response to recent forestry history. Our results suggest that current forest management practices change the composition of ground-dwelling beetle communities mainly by favoring generalists and open habitat species. To protect important forest beetle communities and thus the ecosystem functions and services provided by them, we suggest to shelter remaining ancient forests and to develop near-to-nature management strategies by prolonging rotation periods and increasing structural diversity of managed forests. Possible geographic variations in the response of beetle communities need to be considered in conservation-orientated forest management strategies. (C) 2014 Elsevier B.V. All rights reserved. KW - Beech forest KW - Biodiversity Exploratories KW - Conifer plantations KW - Habitat preferences KW - Insects KW - Land use Y1 - 2014 U6 - https://doi.org/10.1016/j.foreco.2014.06.012 SN - 0378-1127 SN - 1872-7042 VL - 329 SP - 166 EP - 176 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Simons, Nadja K. A1 - Gossner, Martin M. A1 - Lewinsohn, Thomas M. A1 - Boch, Steffen A1 - Lange, Markus A1 - Müller, Jörg A1 - Pasalic, Esther A1 - Socher, Stephanie A. A1 - Türke, Manfred A1 - Fischer, Markus A1 - Weisser, Wolfgang W. T1 - Resource-mediated indirect effects of grassland management on arthropod diversity JF - PLoS one N2 - Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0107033 SN - 1932-6203 VL - 9 IS - 9 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Allan, Eric A1 - Bossdorf, Oliver A1 - Dormann, Carsten F. A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Tscharntke, Teja A1 - Blüthgen, Nico A1 - Bellach, Michaela A1 - Birkhofer, Klaus A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Chatzinotas, Antonis A1 - Christ, Sabina A1 - Daniel, Rolf A1 - Diekötter, Tim A1 - Fischer, Christiane A1 - Friedl, Thomas A1 - Glaser, Karin A1 - Hallmann, Christine A1 - Hodac, Ladislav A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klein, Alexandra Maria A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Müller, Jörg A1 - Nacke, Heiko A1 - Pasalic, Esther A1 - Rillig, Matthias C. A1 - Rothenwoehrer, Christoph A1 - Schally, Peter A1 - Scherber, Christoph A1 - Schulze, Waltraud X. A1 - Socher, Stephanie A. A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Türke, Manfred A1 - Weiner, Christiane N. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Gockel, Sonja A1 - Gorke, Martin A1 - Hemp, Andreas A1 - Renner, Swen C. A1 - Schöning, Ingo A1 - Pfeiffer, Simone A1 - König-Ries, Birgitta A1 - Buscot, Francois A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Interannual variation in land-use intensity enhances grassland multidiversity JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. KW - biodiversity loss KW - agricultural grasslands KW - Biodiversity Exploratories Y1 - 2014 U6 - https://doi.org/10.1073/pnas.1312213111 SN - 0027-8424 VL - 111 IS - 1 SP - 308 EP - 313 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Müller, Jörg A1 - Heinze, Johannes A1 - Joshi, Jasmin Radha A1 - Boch, Steffen A1 - Klaus, Valentin H. A1 - Fischer, Markus A1 - Prati, Daniel T1 - Influence of experimental soil disturbances on the diversity of plants in agricultural grasslands JF - Journal of plant ecology N2 - Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account. Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce. KW - annuals KW - bryophytes KW - colonization KW - intermediate disturbance hypothesis KW - microsites Y1 - 2014 U6 - https://doi.org/10.1093/jpe/rtt062 SN - 1752-9921 SN - 1752-993X VL - 7 IS - 6 SP - 509 EP - 517 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Rottstock, Tanja A1 - Joshi, Jasmin Radha A1 - Kummer, Volker A1 - Fischer, Markus T1 - Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant JF - Ecology : a publication of the Ecological Society of America N2 - Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals. KW - biodiversity KW - ecosystem processes KW - ecosystem services KW - grasslands KW - multi-host-multi-pathogen interactions KW - obligate parasitic fungal pathogens KW - pathogen diversity KW - pathogen proneness KW - pathogen transmission KW - plant functional types Y1 - 2014 SN - 0012-9658 SN - 1939-9170 VL - 95 IS - 7 SP - 1907 EP - 1917 PB - Wiley CY - Washington ER - TY - JOUR A1 - Gossner, Martin M. A1 - Pasalic, Esther A1 - Lange, Markus A1 - Lange, Patricia A1 - Boch, Steffen A1 - Hessenmöller, Dominik A1 - Müller, Jörg A1 - Socher, Stephanie A. A1 - Fischer, Markus A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. T1 - Differential responses of herbivores and herbivory to management in temperate Eeuropean beech JF - PLoS one N2 - Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0104876 SN - 1932-6203 VL - 9 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Weiss, Lina A1 - Pfestorf, Hans A1 - May, Felix A1 - Körner, Katrin A1 - Boch, Steffen A1 - Fischer, Markus A1 - Müller, Jörg A1 - Prati, Daniel A1 - Socher, Stephanie A. A1 - Jeltsch, Florian T1 - Grazing response patterns indicate isolation of semi-natural European grasslands JF - Oikos N2 - Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species-rich semi-natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on-going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades. Y1 - 2014 U6 - https://doi.org/10.1111/j.1600-0706.2013.00957.x SN - 0030-1299 SN - 1600-0706 VL - 123 IS - 5 SP - 599 EP - 612 PB - Wiley-Blackwell CY - Hoboken ER -