TY - JOUR A1 - Fritz, Michael Andre A1 - Rosa, Stefanie A1 - Sicard, Adrien T1 - Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology JF - Frontiers in genetics N2 - The primary function of leaves is to provide an interface between plants and their environment for gas exchange, light exposure and thermoregulation. Leaves have, therefore a central contribution to plant fitness by allowing an efficient absorption of sunlight energy through photosynthesis to ensure an optimal growth. Their final geometry will result from a balance between the need to maximize energy uptake while minimizing the damage caused by environmental stresses. This intimate relationship between leaf and its surroundings has led to an enormous diversification in leaf forms. Leaf shape varies between species, populations, individuals or even within identical genotypes when those are subjected to different environmental conditions. For instance, the extent of leaf margin dissection has, for long, been found to inversely correlate with the mean annual temperature, such that Paleobotanists have used models based on leaf shape to predict the paleoclimate from fossil flora. Leaf growth is not only dependent on temperature but is also regulated by many other environmental factors such as light quality and intensity or ambient humidity. This raises the question of how the different signals can be integrated at the molecular level and converted into clear developmental decisions. Several recent studies have started to shed the light on the molecular mechanisms that connect the environmental sensing with organ-growth and patterning. In this review, we discuss the current knowledge on the influence of different environmental signals on leaf size and shape, their integration as well as their importance for plant adaptation. KW - plants KW - leaf morphology KW - environment KW - developmental plasticity KW - gene regulatory networks KW - sensory system KW - gene responsiveness Y1 - 2018 U6 - https://doi.org/10.3389/fgene.2018.00478 SN - 1664-8021 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Quiterio, Ana A1 - Martins, Joao A1 - Onofre, Marcos A1 - Costa, Joao A1 - Rodrigues, Joao Mota A1 - Gerlach, Erin A1 - Scheur, Claude A1 - Herrmann, Christian T1 - MOBAK 1 assessment in primary physical education BT - exploring basic motor competences of portuguese 6-Year-Olds JF - Perceptual & motor skills N2 - Children’s motor competence is known to have a determinant role in learning and engaging later in complex motor skills and, thus, in physical activity. The development of adequate motor competence is a central aim of physical education, and assuring that pupils are learning and developing motor competence depends on accurate assessment protocols. The MOBAK 1 test battery is a recent instrument developed to assess motor competence in primary physical education. This study used the MOBAK 1 to explore motor competence levels and gender differences among 249 (Mage = 6.3, SD = 0.5 years; 127 girls and 122 boys) Grade 1 primary school Portuguese children. On independent sample t tests, boys presented higher object movement motor competence than girls (boys: M = 5.8, SD = 1.7; girls: M = 4.0, SD = 1.7; p < .001), while girls were more proficient among self-movement skills (girls: M = 5.1, SD = 1.8; boys: M = 4.3, SD = 1.7; p < .01). On “total motor competence,” boys (M = 10.3, SD = 2.6) averaged one point ahead of girls (M = 9.1, SD = 2.9). The percentage of girls in the first quartile of object movement was 18.9%, while, for “self movement,” the percentage of boys in the first quartile was almost double that of girls (30.3% and 17.3%, respectively). The confirmatory model to test for construct validity confirmed the assumed theoretical two-factor structure of MOBAK 1 test items in this Portuguese sample. These results support the MOBAK 1 instrument for assessing motor competence and highlighted gender differences, of relevance to intervention efforts. KW - physical education KW - MOBAK 1 KW - instrument KW - assessment KW - motor competence Y1 - 2018 U6 - https://doi.org/10.1177/0031512518804358 SN - 0031-5125 SN - 1558-688X VL - 125 IS - 6 SP - 1055 EP - 1069 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Leimkühler, Silke T1 - Shared function and moonlighting proteins in molybdenum cofactor biosynthesis JF - Biological chemistry N2 - The biosynthesis of the molybdenum cofactor (Moco) is a highly conserved pathway in bacteria, archaea and eukaryotes. The molybdenum atom in Moco-containing enzymes is coordinated to the dithiolene group of a tricyclic pyranopterin monophosphate cofactor. The biosynthesis of Moco can be divided into three conserved steps, with a fourth present only in bacteria and archaea: (1) formation of cyclic pyranopterin monophosphate, (2) formation of molybdopterin (MPT), (3) insertion of molybdenum into MPT to form Mo-MPT, and (4) additional modification of Mo-MPT in bacteria with the attachment of a GMP or CMP nucleotide, forming the dinucleotide variants of Moco. While the proteins involved in the catalytic reaction of each step of Moco biosynthesis are highly conserved among the Phyla, a surprising link to other cellular pathways has been identified by recent discoveries. In particular, the pathways for FeS cluster assembly and thio-modifications of tRNA are connected to Moco biosynthesis by sharing the same protein components. Further, proteins involved in Moco biosynthesis are not only shared with other pathways, but additionally have moonlighting roles. This review gives an overview of Moco biosynthesis in bacteria and humans and highlights the shared function and moonlighting roles of the participating proteins. KW - FeS cluster KW - molybdenum cofactor KW - molybdo-enzymes KW - moonlighting KW - sulfur transfer KW - tRNA thiolation Y1 - 2017 U6 - https://doi.org/10.1515/hsz-2017-0110 SN - 1431-6730 SN - 1437-4315 VL - 398 SP - 1009 EP - 1026 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Zupok, Arkadiusz A1 - Iobbi-Nivol, Chantal A1 - Mejean, Vincent A1 - Leimkühler, Silke T1 - The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria JF - Metallomics : integrated biometal science N2 - Bacterial molybdoenzymes are key enzymes involved in the global sulphur, nitrogen and carbon cycles. These enzymes require the insertion of the molybdenum cofactor (Moco) into their active sites and are able to catalyse a large range of redox-reactions. Escherichia coli harbours nineteen different molybdoenzymes that require a tight regulation of their synthesis according to substrate availability, oxygen availability and the cellular concentration of molybdenum and iron. The synthesis and assembly of active molybdoenzymes are regulated at the level of transcription of the structural genes and of translation in addition to the genes involved in Moco biosynthesis. The action of global transcriptional regulators like FNR, NarXL/QP, Fur and ArcA and their roles on the expression of these genes is described in detail. In this review we focus on what is known about the molybdenum- and iron-dependent regulation of molybdoenzyme and Moco biosynthesis genes in the model organism E. coli. The gene regulation in E. coli is compared to two other well studied model organisms Rhodobacter capsulatus and Shewanella oneidensis. Y1 - 2019 U6 - https://doi.org/10.1039/c9mt00186g SN - 1756-5901 SN - 1756-591X VL - 11 IS - 10 SP - 1602 EP - 1624 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Nakamura, Moritaka A1 - Grebe, Markus T1 - Outer, inner and planar polarity in the Arabidopsis root JF - Current opinion in plant biology N2 - Plant roots control uptake of water and nutrients and cope with environmental challenges. The root epidermis provides the first selective interface for nutrient absorption, while the endodermis produces the main apoplastic diffusion barrier in the form of a structure called the Casparian strip. The positioning of root hairs on epidermal cells, and of the Casparian strip around endodermal cells, requires asymmetries along cellular axes (cell polarity). Cell polarity is termed planar polarity, when coordinated within the plane of a given tissue layer. Here, we review recent molecular advances towards understanding both the polar positioning of the proteo-lipid membrane domain instructing root hair initiation, and the cytoskeletal, trafficking and polar tethering requirements of proteins at outer or inner plasma membrane domains. Finally, we highlight progress towards understanding mechanisms of Casparian strip formation and underlying endodermal cell polarity. Y1 - 2017 U6 - https://doi.org/10.1016/j.pbi.2017.08.002 SN - 1369-5266 SN - 1879-0356 VL - 41 SP - 46 EP - 53 PB - Elsevier CY - London ER - TY - JOUR A1 - Yarman, Aysu A1 - Scheller, Frieder W. T1 - How reliable is the electrochemical readout of MIP sensors? JF - Sensors N2 - Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration. KW - molecularly imprinted polymers KW - electropolymerization KW - direct electron KW - transfer KW - catalysis KW - redox marker KW - gate effect Y1 - 2020 U6 - https://doi.org/10.3390/s20092677 SN - 1424-8220 VL - 20 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Nickerson, David A1 - Atalag, Koray A1 - de Bono, Bernard A1 - Geiger, Joerg A1 - Goble, Carole A1 - Hollmann, Susanne A1 - Lonien, Joachim A1 - Mueller, Wolfgang A1 - Regierer, Babette A1 - Stanford, Natalie J. A1 - Golebiewski, Martin A1 - Hunter, Peter T1 - The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable JF - Interface focus N2 - Reconstructing and understanding the Human Physiome virtually is a complex mathematical problem, and a highly demanding computational challenge. Mathematical models spanning from the molecular level through to whole populations of individuals must be integrated, then personalized. This requires interoperability with multiple disparate and geographically separated data sources, and myriad computational software tools. Extracting and producing knowledge from such sources, even when the databases and software are readily available, is a challenging task. Despite the difficulties, researchers must frequently perform these tasks so that available knowledge can be continually integrated into the common framework required to realize the Human Physiome. Software and infrastructures that support the communities that generate these, together with their underlying standards to format, describe and interlink the corresponding data and computer models, are pivotal to the Human Physiome being realized. They provide the foundations for integrating, exchanging and re-using data and models efficiently, and correctly, while also supporting the dissemination of growing knowledge in these forms. In this paper, we explore the standards, software tooling, repositories and infrastructures that support this work, and detail what makes them vital to realizing the Human Physiome. KW - Human Physiome KW - standards KW - repositories KW - service infrastructure KW - reproducible science KW - managing big data Y1 - 2016 U6 - https://doi.org/10.1098/rsfs.2015.0103 SN - 2042-8898 SN - 2042-8901 VL - 6 SP - 57 EP - 61 PB - Royal Society CY - London ER - TY - JOUR A1 - Romero-Mujalli, Daniel A1 - Jeltsch, Florian A1 - Tiedemann, Ralph T1 - Individual-based modeling of eco-evolutionary dynamics BT - state of the art and future directions JF - Regional environmental change N2 - A challenge for eco-evolutionary research is to better understand the effect of climate and landscape changes on species and their distribution. Populations of species can respond to changes in their environment through local genetic adaptation or plasticity, dispersal, or local extinction. The individual-based modeling (IBM) approach has been repeatedly applied to assess organismic responses to environmental changes. IBMs simulate emerging adaptive behaviors from the basic entities upon which both ecological and evolutionary mechanisms act. The objective of this review is to summarize the state of the art of eco-evolutionary IBMs and to explore to what degree they already address the key responses of organisms to environmental change. In this, we identify promising approaches and potential knowledge gaps in the implementation of eco-evolutionary mechanisms to motivate future research. Using mainly the ISI Web of Science, we reveal that most of the progress in eco-evolutionary IBMs in the last decades was achieved for genetic adaptation to novel local environmental conditions. There is, however, not a single eco-evolutionary IBM addressing the three potential adaptive responses simultaneously. Additionally, IBMs implementing adaptive phenotypic plasticity are rare. Most commonly, plasticity was implemented as random noise or reaction norms. Our review further identifies a current lack of models where plasticity is an evolving trait. Future eco-evolutionary models should consider dispersal and plasticity as evolving traits with their associated costs and benefits. Such an integrated approach could help to identify conditions promoting population persistence depending on the life history strategy of organisms and the environment they experience. KW - Modeling KW - Individual-based models KW - Ecology KW - Evolution KW - Eco-evolutionary dynamics Y1 - 2018 U6 - https://doi.org/10.1007/s10113-018-1406-7 SN - 1436-3798 SN - 1436-378X VL - 19 IS - 1 SP - 1 EP - 12 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Bell, Elanor M. A1 - Vincent, Amanda C. J. T1 - Art.: Gasterosteiform Y1 - 2002 ER - TY - JOUR A1 - Bäurle, Isabel T1 - Can't remember to forget you BT - Chromatin-based priming of somatic stress responses JF - Seminars in cell & developmental biology N2 - In nature plants are exposed to frequent changes in their abiotic and biotic environment. While some environmental cues are used to gauge the environment and align growth and development, others are beyond the regularly encountered spectrum of a species and trigger stress responses. Such stressful conditions provide a potential threat to survival and integrity. Plants adapt to extreme environmental conditions through physiological adaptations that are usually transient and are maintained until stressful environments subside. It is increasingly appreciated that in some cases environmental cues activate a stress memory that persists for some time after the extreme condition has subsided. Recent research has shown that this stress-induced environmental memory is mediated by epigenetic and chromatin-based mechanisms and both histone methylation and nucleosome occupancy are associated with it. KW - Priming KW - Transcriptional memory KW - Chromatin KW - H3K4 methylation KW - Nucleosome occupancy Y1 - 2017 U6 - https://doi.org/10.1016/j.semcdb.2017.09.032 SN - 1084-9521 VL - 83 SP - 133 EP - 139 PB - Elsevier CY - London ER -