TY - JOUR A1 - Moustakas, Aristides A1 - Günther, Matthias A1 - Wiegand, Kerstin A1 - Müller, Karl-Heinz A1 - Ward, David A1 - Meyer, Katrin M. A1 - Jeltsch, Florian T1 - Long-term mortality patterns of the deep-rooted Acacia erioloba BT - The middle class shall die! JF - Journal of vegetation science N2 - Question: Is there a relationship between size and death in the Iona-lived, deep-rooted tree, Acacia erioloba, in a semi-arid savanna? What is the size-class distribution of A. erioloba mortality? Does the mortality distribution differ from total tree size distribution? Does A. erioloba mortality distribution match the mortality distributions recorded thus far in other environments? Location: Dronfield Ranch, near Kimberley, Kalahari, South Africa. Methods: A combination of aerial photographs and a satellite image covering 61 year was used to provide long-term spatial data on mortality. We used aerial photographs of the study area from 1940, 1964, 1984, 1993 and a satellite image from 2001 to follow three plots covering 510 ha. We were able to identify and individually follow ca. 3000 individual trees from 1940 till 2001. Results: The total number of trees increased over time. No relationship between total number of trees and mean tree size was detected. There were no trends over time in total number of deaths per plot or in size distributions of dead trees. Kolmogorov-Smirnov tests showed no differences in size class distributions for living trees through time. The size distribution of dead trees was significantly different from the size distribution of all trees present on the plots. Overall, the number of dead trees was low in small size classes, reached a peak value when canopy area was 20 - 30 m(2), and declined in lamer size-classes. Mortality as a ratio of dead vs. total trees peaked at intermediate canopy sizes too. Conclusion: A. erioloba mortality was size-dependent, peaking at intermediate sizes. The mortality distribution differs from all other tree mortality distributions recorded thus far. We suggest that a possible mechanism for this unusual mortality distribution is intraspecific competition for water in this semi-arid environment. KW - competition KW - long-term data KW - remote sensing KW - savanna KW - size dependent mortality KW - size distribution KW - tree death Y1 - 2006 U6 - https://doi.org/10.1111/j.1654-1103.2006.tb02468.x SN - 1100-9233 VL - 17 SP - 473 EP - 480 PB - Blackwell CY - Malden ER - TY - JOUR A1 - Fer, Istem A1 - Tietjen, Britta A1 - Jeltsch, Florian A1 - Wolff, Christian Michael T1 - The influence of El Nino-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario JF - Biogeosciences N2 - The El Nino-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security. Y1 - 2017 U6 - https://doi.org/10.5194/bg-14-4355-2017 SN - 1726-4170 SN - 1726-4189 VL - 14 SP - 4355 EP - 4374 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Reeg, Jette A1 - Strigl, Lea A1 - Jeltsch, Florian T1 - Agricultural buffer zone thresholds to safeguard functional bee diversity BT - Insights from a community modeling approach JF - Ecology and Evolution N2 - Wild bee species are important pollinators in agricultural landscapes. However, population decline was reported over the last decades and is still ongoing. While agricultural intensification is a major driver of the rapid loss of pollinating species, transition zones between arable fields and forest or grassland patches, i.e., agricultural buffer zones, are frequently mentioned as suitable mitigation measures to support wild bee populations and other pollinator species. Despite the reported general positive effect, it remains unclear which amount of buffer zones is needed to ensure a sustainable and permanent impact for enhancing bee diversity and abundance. To address this question at a pollinator community level, we implemented a process-based, spatially explicit simulation model of functional bee diversity dynamics in an agricultural landscape. More specifically, we introduced a variable amount of agricultural buffer zones (ABZs) at the transition of arable to grassland, or arable to forest patches to analyze the impact on bee functional diversity and functional richness. We focused our study on solitary bees in a typical agricultural area in the Northeast of Germany. Our results showed positive effects with at least 25% of virtually implemented agricultural buffer zones. However, higher amounts of ABZs of at least 75% should be considered to ensure a sufficient increase in Shannon diversity and decrease in quasi-extinction risks. These high amounts of ABZs represent effective conservation measures to safeguard the stability of pollination services provided by solitary bee species. As the model structure can be easily adapted to other mobile species in agricultural landscapes, our community approach offers the chance to compare the effectiveness of conservation measures also for other pollinator communities in future. KW - agricultural landscape KW - buffer zones KW - community model KW - functional traits KW - solitary bees KW - spatially explicit Y1 - 2022 U6 - https://doi.org/10.1002/ece3.8748 SN - 2045-7758 VL - 12 SP - 1 EP - 17 PB - Wiley Online Library CY - Hoboken, New Jersey, USA ET - 3 ER - TY - JOUR A1 - Schibalski, Anett A1 - Körner, Katrin A1 - Maier, Martin A1 - Jeltsch, Florian A1 - Schröder, Boris T1 - Novel model coupling approach for resilience analysis of coastal plant communities JF - Ecological applications : a publication of the Ecological Society of America N2 - Resilience is a major research focus covering a wide range of topics from biodiversity conservation to ecosystem (service) management. Model simulations can assess the resilience of, for example, plant species, measured as the return time to conditions prior to a disturbance. This requires process-based models (PBM) that implement relevant processes such as regeneration and reproduction and thus successfully reproduce transient dynamics after disturbances. Such models are often complex and thus limited to either short-term or small-scale applications, whereas many research questions require species predictions across larger spatial and temporal scales. We suggest a framework to couple a PBM and a statistical species distribution model (SDM), which transfers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model combines the advantages of both approaches: the convenient applicability of SDMs and the relevant process detail of PBMs in abrupt environmental change situations. First, we simulate dynamic responses of species communities to a disturbance event with a PBM. We aggregate the response behavior in two resilience metrics: return time and amplitude of the response peak. These metrics are then used to complement long-term SDM projections with dynamic short-term responses to disturbance. To illustrate our framework, we investigate the effect of abrupt short-term groundwater level and salinity changes on coastal vegetation at the German Baltic Sea. We found two example species to be largely resilient, and, consequently, modifications of SDM predictions consisted mostly of smoothing out peaks in the occurrence probability that were not confirmed by the PBM. Discrepancies between SDM- and PBM-predicted species responses were caused by community dynamics simulated in the PBM and absent from the SDM. Although demonstrated with boosted regression trees (SDM) and an existing individual-based model, IBC-grass (PBM), our flexible framework can easily be applied to other PBM and SDM types, as well as other definitions of short-term disturbances or long-term trends of environmental change. Thus, our framework allows accounting for biological feedbacks in the response to short- and long-term environmental changes as a major advancement in predictive vegetation modeling. KW - Baltic Sea KW - hybrid model KW - Lolium perenne KW - model coupling KW - Scirpus maritimus KW - transient dynamics Y1 - 2018 U6 - https://doi.org/10.1002/eap.1758 SN - 1051-0761 SN - 1939-5582 VL - 28 IS - 6 SP - 1640 EP - 1654 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Romero-Mujalli, Daniel A1 - Jeltsch, Florian A1 - Tiedemann, Ralph T1 - Individual-based modeling of eco-evolutionary dynamics BT - state of the art and future directions JF - Regional environmental change N2 - A challenge for eco-evolutionary research is to better understand the effect of climate and landscape changes on species and their distribution. Populations of species can respond to changes in their environment through local genetic adaptation or plasticity, dispersal, or local extinction. The individual-based modeling (IBM) approach has been repeatedly applied to assess organismic responses to environmental changes. IBMs simulate emerging adaptive behaviors from the basic entities upon which both ecological and evolutionary mechanisms act. The objective of this review is to summarize the state of the art of eco-evolutionary IBMs and to explore to what degree they already address the key responses of organisms to environmental change. In this, we identify promising approaches and potential knowledge gaps in the implementation of eco-evolutionary mechanisms to motivate future research. Using mainly the ISI Web of Science, we reveal that most of the progress in eco-evolutionary IBMs in the last decades was achieved for genetic adaptation to novel local environmental conditions. There is, however, not a single eco-evolutionary IBM addressing the three potential adaptive responses simultaneously. Additionally, IBMs implementing adaptive phenotypic plasticity are rare. Most commonly, plasticity was implemented as random noise or reaction norms. Our review further identifies a current lack of models where plasticity is an evolving trait. Future eco-evolutionary models should consider dispersal and plasticity as evolving traits with their associated costs and benefits. Such an integrated approach could help to identify conditions promoting population persistence depending on the life history strategy of organisms and the environment they experience. KW - Modeling KW - Individual-based models KW - Ecology KW - Evolution KW - Eco-evolutionary dynamics Y1 - 2018 U6 - https://doi.org/10.1007/s10113-018-1406-7 SN - 1436-3798 SN - 1436-378X VL - 19 IS - 1 SP - 1 EP - 12 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Romero-Mujalli, Daniel A1 - Jeltsch, Florian A1 - Tiedemann, Ralph T1 - Elevated mutation rates are unlikely to evolve in sexual species, not even under rapid environmental change JF - BMC Evolutionary Biology N2 - Background Organisms are expected to respond to changing environmental conditions through local adaptation, range shift or local extinction. The process of local adaptation can occur by genetic changes or phenotypic plasticity, and becomes especially relevant when dispersal abilities or possibilities are somehow constrained. For genetic changes to occur, mutations are the ultimate source of variation and the mutation rate in terms of a mutator locus can be subject to evolutionary change. Recent findings suggest that the evolution of the mutation rate in a sexual species can advance invasion speed and promote adaptation to novel environmental conditions. Following this idea, this work uses an individual-based model approach to investigate if the mutation rate can also evolve in a sexual species experiencing different conditions of directional climate change, under different scenarios of colored stochastic environmental noise, probability of recombination and of beneficial mutations. The color of the noise mimicked investigating the evolutionary dynamics of the mutation rate in different habitats. Results The results suggest that the mutation rate in a sexual species experiencing directional climate change scenarios can evolve and reach relatively high values mainly under conditions of complete linkage of the mutator locus and the adaptation locus. In contrast, when they are unlinked, the mutation rate can slightly increase only under scenarios where at least 50% of arising mutations are beneficial and the rate of environmental change is relatively fast. This result is robust under different scenarios of stochastic environmental noise, which supports the observation of no systematic variation in the mutation rate among organisms experiencing different habitats. Conclusions Given that 50% beneficial mutations may be an unrealistic assumption, and that recombination is ubiquitous in sexual species, the evolution of an elevated mutation rate in a sexual species experiencing directional climate change might be rather unlikely. Furthermore, when the percentage of beneficial mutations and the population size are small, sexual species (especially multicellular ones) producing few offspring may be expected to react to changing environments not by adaptive genetic change, but mainly through plasticity. Without the ability for a plastic response, such species may become – at least locally – extinct. KW - Individual-based models KW - sexual species KW - Beneficial mutations KW - Recombination KW - Directional climate change KW - Mutator locus KW - Mutation rate Y1 - 2019 U6 - https://doi.org/10.1186/s12862-019-1494-0 SN - 1471-2148 VL - 19 PB - BioMed Central CY - London ER - TY - GEN A1 - Romero-Mujalli, Daniel A1 - Jeltsch, Florian A1 - Tiedemann, Ralph T1 - Elevated mutation rates are unlikely to evolve in sexual species, not even under rapid environmental change T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background Organisms are expected to respond to changing environmental conditions through local adaptation, range shift or local extinction. The process of local adaptation can occur by genetic changes or phenotypic plasticity, and becomes especially relevant when dispersal abilities or possibilities are somehow constrained. For genetic changes to occur, mutations are the ultimate source of variation and the mutation rate in terms of a mutator locus can be subject to evolutionary change. Recent findings suggest that the evolution of the mutation rate in a sexual species can advance invasion speed and promote adaptation to novel environmental conditions. Following this idea, this work uses an individual-based model approach to investigate if the mutation rate can also evolve in a sexual species experiencing different conditions of directional climate change, under different scenarios of colored stochastic environmental noise, probability of recombination and of beneficial mutations. The color of the noise mimicked investigating the evolutionary dynamics of the mutation rate in different habitats. Results The results suggest that the mutation rate in a sexual species experiencing directional climate change scenarios can evolve and reach relatively high values mainly under conditions of complete linkage of the mutator locus and the adaptation locus. In contrast, when they are unlinked, the mutation rate can slightly increase only under scenarios where at least 50% of arising mutations are beneficial and the rate of environmental change is relatively fast. This result is robust under different scenarios of stochastic environmental noise, which supports the observation of no systematic variation in the mutation rate among organisms experiencing different habitats. Conclusions Given that 50% beneficial mutations may be an unrealistic assumption, and that recombination is ubiquitous in sexual species, the evolution of an elevated mutation rate in a sexual species experiencing directional climate change might be rather unlikely. Furthermore, when the percentage of beneficial mutations and the population size are small, sexual species (especially multicellular ones) producing few offspring may be expected to react to changing environments not by adaptive genetic change, but mainly through plasticity. Without the ability for a plastic response, such species may become – at least locally – extinct. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 776 KW - Individual-based models KW - sexual species KW - Beneficial mutations KW - Mutation rate KW - Mutator locus KW - Directional climate change KW - Recombination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439058 SN - 1866-8372 IS - 776 ER - TY - JOUR A1 - Köchy, Martin A1 - Mathaj, Martin A1 - Jeltsch, Florian A1 - Malkinson, Dan T1 - Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes N2 - Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future. Y1 - 2008 UR - http://www.springerlink.com/content/gj0567116q770036/ U6 - https://doi.org/10.1007/s10113-008-0048-6 ER - TY - JOUR A1 - Schiffers, Katja A1 - Schurr, Frank Martin A1 - Tielbörger, Katja A1 - Urbach, Carsten A1 - Moloney, Kirk A. A1 - Jeltsch, Florian T1 - Dealing with virtual aggregation : a new index for analysing heterogeneous point patterns Y1 - 2008 UR - http://www3.interscience.wiley.com/journal/117966123/home U6 - https://doi.org/10.1111/j.0906-7590.2008.05374.x SN - 0906-7590 ER - TY - JOUR A1 - Tews, Jörg A1 - Esther, Alexandra A1 - Milton, Sue J. A1 - Jeltsch, Florian T1 - Linking a population model with an ecosystem model : assessing the impact of land use and climate change on savanna shrub cover dynamics N2 - In semiarid savannas of Southern Africa current land use practices and climate change may lead to substantial changes of vegetation structure in the near future, however uncertainty remains about the potential consequences and the magnitude of change. In this paper we study the impact of climate change, cattle grazing, and wood cutting on shrub cover dynamics in savannas of the southern Kalahari. We use an established savanna ecosystem model to simulate landscape dynamics in terms of rainfall, fire and distribution of the dominant tree Acacia erioloba. We then incorporate these data into a spatial population model of the common, fleshy-fruited shrub Grewia flava and investigate shrub cover dynamics for a period of 100 years. Depending on the intensity of commercial wood cutting practices tree removal of A. erioloba led to a strong decline of the G. flava population, as shrub recruitment is concentrated in tree sub-canopies due to bird-mediated seed dispersal. Under climate change shrub cover slightly decreased with decreasing precipitation and was unchanged with increase in precipitation variability. Contrarily, grazing by cattle strongly increased shrub cover and facilitated shrub encroachment because of cattle-induced distribution of G. flava seeds into the matrix vegetation. Knowledge of the latter process is particularly important because shrub invasion is a major concern for conservation and savanna rangeland management as a result of its adverse effects on livestock carrying capacity and biodiversity Y1 - 2006 UR - http://www.mendeley.com/research/linking-a-population-model-with-an-ecosystem-model-assessing-the-impact- of-land-use-and-climate-change-on-savanna-shrub-cover-dynamics/#page-1 U6 - https://doi.org/10.1016/j.ecolmodel.2005.11.025 ER -