TY - JOUR A1 - Smith, Sarah R. A1 - Dupont, Chris L. A1 - McCarthy, James K. A1 - Broddrick, Jared T. A1 - Obornik, Miroslav A1 - Horak, Ales A1 - Füssy, Zoltán A1 - Cihlar, Jaromir A1 - Kleessen, Sabrina A1 - Zheng, Hong A1 - McCrow, John P. A1 - Hixson, Kim K. A1 - Araujo, Wagner L. A1 - Nunes-Nesi, Adriano A1 - Fernie, Alisdair A1 - Nikoloski, Zoran A1 - Palsson, Bernhard O. A1 - Allen, Andrew E. T1 - Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom JF - Nature Communications N2 - Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa. KW - Biochemistry KW - Computational biology and bioinformatics KW - Evolution KW - Microbiology KW - Molecular biology Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-12407-y SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Ma, Xuemin A1 - Zhang, Youjun A1 - Tureckova, Veronika A1 - Xue, Gang-Ping A1 - Fernie, Alisdair A1 - Mueller-Röber, Bernd A1 - Balazadeh, Salma T1 - The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8′-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato. Y1 - 2018 U6 - https://doi.org/10.1104/pp.18.00292 SN - 0032-0889 SN - 1532-2548 VL - 177 IS - 3 SP - 1286 EP - 1302 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Kamranfar, Iman A1 - Xue, Gang-Ping A1 - Tohge, Takayuki A1 - Sedaghatmehr, Mastoureh A1 - Fernie, Alisdair A1 - Balazadeh, Salma A1 - Mueller-Roeber, Bernd T1 - Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence JF - New phytologist : international journal of plant science N2 - Leaf senescence is a key process in plants that culminates in the degradation of cellular constituents and massive reprogramming of metabolism for the recovery of nutrients from aged leaves for their reuse in newly developing sinks. We used molecular-biological and metabolomics approaches to identify NAC transcription factor (TF) RD26 as an important regulator of metabolic reprogramming in Arabidopsis thaliana. RD26 directly activates CHLOROPLAST VESICULATION (CV), encoding a protein crucial for chloroplast protein degradation, concomitant with an enhanced protein loss in RD26 over-expressors during senescence, but a reduced decline of protein in rd26 knockout mutants. RD26 also directly activates LKR/SDH involved in lysine catabolism, and PES1 important for phytol degradation. Metabolic profiling revealed reduced c-aminobutyric acid (GABA) in RD26 overexpressors, accompanied by the induction of respective catabolic genes. Degradation of lysine, phytol and GABA is instrumental for maintaining mitochondrial respiration in carbon-limiting conditions during senescence. RD26 also supports the degradation of starch and the accumulation of mono-and disaccharides during senescence by directly enhancing the expression of AMY1, SFP1 and SWEET15 involved in carbohydrate metabolism and transport. Collectively, during senescence RD26 acts by controlling the expression of genes across the entire spectrum of the cellular degradation hierarchy. KW - Arabidopsis KW - fatty acid KW - primary metabolism KW - protein and amino acid degradation KW - respiration KW - senescence Y1 - 2018 U6 - https://doi.org/10.1111/nph.15127 SN - 0028-646X SN - 1469-8137 VL - 218 IS - 4 SP - 1543 EP - 1557 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ferrari, Camilla A1 - Proost, Sebastian A1 - Janowski, Marcin Andrzej A1 - Becker, Jörg A1 - Nikoloski, Zoran A1 - Bhattacharya, Debashish A1 - Price, Dana A1 - Tohge, Takayuki A1 - Bar-Even, Arren A1 - Fernie, Alisdair A1 - Stitt, Mark A1 - Mutwil, Marek T1 - Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida JF - Nature Communications N2 - Plants have adapted to the diurnal light-dark cycle by establishing elaborate transcriptional programs that coordinate many metabolic, physiological, and developmental responses to the external environment. These transcriptional programs have been studied in only a few species, and their function and conservation across algae and plants is currently unknown. We performed a comparative transcriptome analysis of the diurnal cycle of nine members of Archaeplastida, and we observed that, despite large phylogenetic distances and dramatic differences in morphology and lifestyle, diurnal transcriptional programs of these organisms are similar. Expression of genes related to cell division and the majority of biological pathways depends on the time of day in unicellular algae but we did not observe such patterns at the tissue level in multicellular land plants. Hence, our study provides evidence for the universality of diurnal gene expression and elucidates its evolutionary history among different photosynthetic eukaryotes. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-08703-2 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zhang, Youjun A1 - Chen, Moxian A1 - Siemiatkowska, Beata A1 - Toleco, Mitchell Rey A1 - Jing, Yue A1 - Strotmann, Vivien A1 - Zhang, Jianghua A1 - Stahl, Yvonne A1 - Fernie, Alisdair T1 - A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species JF - Plant Communications N2 - Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis. KW - transient expression KW - agro-infiltration KW - subcellular localization KW - protein-protein interaction Y1 - 2019 SN - 2590-3462 VL - 1 IS - 5 PB - Science Direct CY - New York ER - TY - JOUR A1 - Pandey, Prashant K. A1 - Yu, Jing A1 - Omranian, Nooshin A1 - Alseekh, Saleh A1 - Vaid, Neha A1 - Fernie, Alisdair A1 - Nikoloski, Zoran A1 - Laitinen, Roosa A. E. T1 - Plasticity in metabolism underpins local responses to nitrogen in Arabidopsis thaliana populations JF - Plant Direct N2 - Nitrogen (N) is central for plant growth, and metabolic plasticity can provide a strategy to respond to changing N availability. We showed that two local A. thaliana populations exhibited differential plasticity in the compounds of photorespiratory and starch degradation pathways in response to three N conditions. Association of metabolite levels with growth-related and fitness traits indicated that controlled plasticity in these pathways could contribute to local adaptation and play a role in plant evolution. KW - Arabidopsis thaliana KW - natural variation KW - nitrogen availability KW - photorespiration KW - plasticity Y1 - 2019 U6 - https://doi.org/10.1002/pld3.186 SN - 2475-4455 VL - 3 IS - 11 PB - John Wiley & sonst LTD CY - Chichester ER - TY - THES A1 - Jing, Yue T1 - Characterization of Serine Carboxypeptidase-like (SCPL) gene family in Brassicaceae Y1 - 2020 ER - TY - THES A1 - Naake, Thomas T1 - Strategies to investigate the natural variation of plant specialized metabolism Y1 - 2020 ER - TY - THES A1 - Mahto, Harendra T1 - In vitro analysis of Early Starvation 1 (ESV1) and Like Early Starvation 1 (LESV) on starch degradation with focus on glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) N2 - Starch is an insoluble polyglucan, comprises of two polymers, namely, the branched α-1,4: α-1,6-D-glucan amylopectin and the almost unbranched α-1,4-D-glucan amylose. The growth of all plants is directly dependent on the accumulation of transitory starch during the daytime when photosynthesis takes place and subsequently starch degradation during the night. Starch phosphorylation takes place by starch-related dikinases called α-glucan, water dikinase (GWD), and phosphoglucan, water dikinase (PWD), and is a very important step in starch degradation. The biochemical mechanisms of phosphorylation of starch are not properly understood. Recent studies have found that there are two starch binding proteins namely, Early Starvation1 (ESV1) and Like Early Starvation1 (LESV), which play an important role in starch metabolism. It has been shown that ESV1 and LESV proteins affect the starch phosphorylation activity of GWD and PWD enzymes, which control the rate of degradation of starch granules. In this thesis, various in vitro assays were performed to identify and understand the mechanism of recombinant proteins; ESV1 and LESV on the starch degradation. The starch degradation was performed by phosphorylation enzymes, GWD and PWD separately. In various enzymatic assays, the influence of the ESV1 and LESV on the actions of GWD and PWD on the surfaces of different native starch granules were analysed. Furthermore, ESV1 and LESV have specifically shown influences on the phosphorylation activities of GWD and PWD on the starch granule surfaces in an antagonistic pattern in such a way that, the GWD mediated phosphorylation were significantly reduced while PWD mediated phosphorylation were significantly increased respectively. In another set of experiments, ISA and BAM hydrolyzing enzymes were used to alter the structure of starch, and then determine the effect of both dikinases mediated phosphorylation in the presence of ESV1 and LESV on the altered starch granules surfaces. In these results, significant decreases in both GWD and PWD mediated phosphorylation were observed in all the treatments containing either ESV1 or LESV proteins only or both ESV1 and LESV. It was also found that LESV preferentially binds to both amylose and amylopectin, while ESV1 binds to highly ordered glucans such as maltodextrins and amylopectin, which are crystalline in structure. Both ESV1 or LESV proteins either individually or in combination have shown influence on the activity of GWD and PWD phosphate incorporation into the starch granules via reduction even though at different percentages depending on the sources of starch, therefore it is difficult to distinguish the specific function between them. The biochemical studies have shown that protein-glucan interaction specifically between ESV1 or LESV or in combination with different species of starch granules has very strong surface binding, or it might be possible that both the proteins not only bind to the surface of the starch granules but also have entered deep inside the glucan structure of the starch granules. However, the results also revealed that ESV1 and LESV did not alter the autophosphorylation of the dikinases. Also, the chain length distribution pattern of the released glucan chains after treatment of starch with ISA enzyme was evaluated with respect to the degree of polymerization (DP) of the different starch granules. Capillary electrophoresis was employed to study the effect of LESV and ESV1 on the chain length distribution. In summary, this study confirms that ESV1 and LESV play an important role in organizing and regulating the starch metabolism process. In the later half, studies were performed to monitor whether the metabolism of carbohydrates and partitioning, contribute to the higher salt tolerance of the facultative halophyte Hordeum marinum when compared to glycophyte Hordeum vulgare. Seedlings with the same size from both species were hydroponically grown at 0, 150, and 300 mM of NaCl for 3 weeks. H. marinum maintained a high relative growth rate, which was found concomitant in higher aptitude plants to maintain efficient shoot tissue hydration and integrity of membrane under salt conditions when compared to H. vulgare. Hence, our data suggested that the change in the starch storage, distribution of soluble sugar concentrations between source and sink organs, and also changes in the level of enzymes involved in the starch metabolism was significant to give insights into the importance of carbohydrate metabolism in barley species with regards to the salt tolerance. Although these results are still in their nascent state, it could be vital for other researchers to formulate future studies. The preliminary results which were studies about the carbohydrate metabolism and partitioning in salt responses in the halophyte H. marinum and the glycophyte H. vulgare revealed that salt tolerance in barley species is not due to osmotic adjustments, but due to other reasons that were not explored in the past studies. However, the activity of DPE2 in H. vulgare was not hampered by the presence of NaCl as observed. While Pho1 and Pho2, activities were highly increased in cultivated barley. These findings could be suggestive of a possible role of these enzymes in the responses of carbohydrate metabolism to salinity. When sea and cultivated barley species were compared, it was discovered that the former had more versatility in carbohydrate metabolism and distribution. N2 - Stärke ist ein unlösliches Polyglucan, das aus zwei Polymeren besteht, nämlich dem verzweigten α-1,4: α-1,6-D-Glucan Amylopektin und dem fast unverzweigten α-1,4-D-Glucan Amylose. Das Wachstum aller Pflanzen hängt direkt von der Akkumulation transitorischer Stärke während des Tages, wenn die Photosynthese stattfindet, und dem anschließenden Stärkeabbau während der Nacht ab. Die Phosphorylierung von Stärke erfolgt durch stärkeverwandte Dikinasen, die α-Glucan-Wasser-Dikinase (GWD) und Phosphoglucan-Wasser-Dikinase (PWD), und ist ein entscheidender Schritt beim Stärkeabbau. Die biochemischen Mechanismen der Phosphorylierung von Stärke sind nicht genau bekannt. Jüngste Studien haben ergeben, dass es zwei stärkebindende Proteine gibt, nämlich Early Starvation1 (ESV1) und Like Early Starvation1 (LESV), die eine wichtige Rolle im Stärkestoffwechsel spielen. Es hat sich gezeigt, dass ESV1- und LESV-Proteine die Stärkephosphorylierungsaktivität der GWD- und PWD-Enzyme beeinflussen, die die Geschwindigkeit des Abbaus von Stärkekörnern steuern. In dieser Arbeit wurden verschiedene In-vitro-Tests durchgeführt, um den Mechanismus der rekombinanten Proteine ESV1 und LESV auf den Stärkeabbau zu identifizieren und zu verstehen.Der Stärkeabbau wurde von den Phosphorylierungsenzymen GWD und PWD getrennt durchgeführt. In verschiedenen enzymatischen Assays wurde der Einfluss von ESV1 und LESV auf die Wirkung von GWD und PWD auf die Oberflächen verschiedener nativer Stärkekörner analysiert. Darüber hinaus haben ESV1 und LESV spezifisch Einflüsse auf die Phosphorylierungsaktivitäten von GWD und PWD auf den Oberflächen der Stärkekörner in einem antagonistischen Muster gezeigt, so dass die GWD-vermittelte Phosphorylierung signifikant reduziert wurde, während die PWD-vermittelte Phosphorylierung signifikant erhöht wurde. In einer anderen Versuchsreihe wurden ISA- und BAM verwendet, um die Struktur der Stärke zu verändern und dann die Auswirkungen der durch beide Dikinasen vermittelten Phosphorylierung in Gegenwart von ESV1 und LESV auf die veränderten Oberflächen der Stärkekörner zu bestimmen. In diesen Ergebnissen wurde ein signifikanter Rückgang der GWD- und PWD-vermittelten Phosphorylierung in allen Behandlungen beobachtet, die entweder nur ESV1- oder LESV-Proteine oder sowohl ESV1 als auch LESV enthielten. Es wurde auch festgestellt, dass LESV vorzugsweise an Amylose und Amylopektin bindet, während ESV1 an hochgeordnete Glucane wie Maltodextrine und Amylopektin bindet, die eine kristalline Struktur aufweisen. Sowohl ESV1- als auch LESV-Proteine haben entweder einzeln oder in Kombination einen Einfluss auf die Aktivität des GWD- und PWD-Phosphateinbaus in die Stärkekörner durch Reduktion gezeigt, jedoch zu unterschiedlichen Prozentsätzen, je nach Stärkequelle, so dass es schwierig ist, ihre spezifische Funktion zu unterscheiden. Die biochemischen Untersuchungen zeigen, dass die Protein-Glucan-Interaktion speziell zwischen ESV1 oder LESV oder in Kombination mit verschiedenen Arten von Stärkekörnern eine sehr starke Oberflächenbindung aufweist, oder es ist möglich, dass beide Proteine nicht nur an die Oberfläche der Stärkekörner binden, sondern auch tief in die Glucanstruktur der Stärkekörner eingedrungen sind. Die Ergebnisse zeigten jedoch auch, dass ESV1 und LESV die Autophosphorylierung der Dikinasen nicht veränderten. Außerdem wurde die Kettenlängenverteilung der freigesetzten Glucanketten nach Behandlung der Stärke mit dem ISA-Enzym im Hinblick auf den Polymerisationsgrad (DP) der verschiedenen Stärkekörner bewertet. Mit Hilfe der Kapillarelektrophorese wurde die Wirkung von LESV und ESV1 auf die Kettenlängenverteilung untersucht. Zusammenfassend bestätigt diese Studie, dass ESV1 und LESV eine wichtige Rolle bei der Organisation und Regulierung des Stärkestoffwechsels spielen. In der zweiten Hälfte wurden Untersuchungen durchgeführt, um zu prüfen, ob der Stoffwechsel von Kohlenhydraten und deren Verteilung zu der höheren Salztoleranz des fakultativen Halophyten Hordeum marinum im Vergleich zum Glykophyten Hordeum vulgare beitragen. Die gleich großen Sämlinge beider Arten wurden 3 Wochen lang bei 0, 150 und 300 mM NaCl hydroponisch gezogen. H. marinum wies eine hohe relative Wachstumsrate auf, die mit einer höheren Fähigkeit der Pflanzen einherging, unter Salzbedingungen eine effiziente Hydratation des Sprossgewebes und die Integrität der Membran aufrechtzuerhalten, als dies bei H. vulgare der Fall war. Unsere Daten deuten also darauf hin, dass die Veränderungen in der Stärkespeicherung, die Verteilung der Konzentrationen löslicher Zucker zwischen Source- und Sinkorganen und auch die Veränderungen in der Menge der am Stärkestoffwechsel beteiligten Enzyme von Bedeutung sind und Einblicke in die Bedeutung des Kohlenhydratstoffwechsels bei Gerstenarten im Hinblick auf die Salztoleranz geben. Obwohl sich diese Ergebnisse noch im Anfangsstadium befinden, könnten sie für andere Forscher bei der Formulierung künftiger Studien von entscheidender Bedeutung sein. Die vorläufigen Ergebnisse der Studien über den Kohlenhydratstoffwechsel und die Verteilung der Kohlenhydrate bei Salzreaktionen im Halophyten H. marinum und im Glykophyten H. vulgare haben gezeigt, dass die Salztoleranz bei Gerstenarten nicht auf osmotische Anpassungen zurückzuführen ist, sondern auf andere Gründe, die in den bisherigen Studien nicht untersucht wurden. Die Aktivität von DPE2 in H. vulgare wurde jedoch nicht wie beobachtet durch die Anwesenheit von NaCl beeinträchtigt. Dagegen waren die Aktivitäten von Pho1 und Pho2 in kultivierter Gerste stark erhöht. Diese Ergebnisse könnten auf eine mögliche Rolle dieser Enzyme bei der Reaktion des Kohlenhydratstoffwechsels auf den Salzgehalt hinweisen. Beim Vergleich von Meeres- und Kulturgerstenarten wurde festgestellt, dass erstere eine größere Vielseitigkeit im Kohlenhydratstoffwechsel und in der Kohlenhydratverteilung aufweisen. KW - Arabidopsis thaliana KW - starch phosphorylation KW - phosphoglucan KW - starch granule surface KW - Early Starvation 1 Y1 - 2022 ER - TY - THES A1 - Seerangan, Kumar T1 - Actin-based regulation of cell and tissue scale morphogenesis in developing leaves T1 - Aktin-basierte Regulierung der Zell- und Gewebeskalenmorphogenese in sich entwickelnden Blättern N2 - Leaves exhibit cells with varying degrees of shape complexity along the proximodistal axis. Heterogeneities in growth directions within individual cells bring about such complexity in cell shape. Highly complex and interconnected gene regulatory networks and signaling pathways have been identified to govern these processes. In addition, the organization of cytoskeletal networks and cell wall mechanical properties greatly influences the regulation of cell shape. Research has shown that microtubules are involved in regulating cellulose deposition and direc-tion of cell growth. However, comprehensive analysis of the regulation of the actin cytoskele-ton in cell shape regulation has not been well studied. This thesis provides evidence that actin regulates aspects of cell growth, division, and direction-al expansion that impacts morphogenesis of developing leaves. The jigsaw puzzle piece mor-phology of epidermal pavement cells further serves as an ideal system to investigate the com-plex process of morphogenetic processes occurring at the cellular level. Here we have em-ployed live cell based imaging studies to track the development of pavement cells in actin com-promised conditions. Genetic perturbation of two predominantly expressed vegetative actin genes ACTIN2 and ACTIN7 results in delayed emergence of the cellular protrusions in pave-ment cells. Perturbation of actin also impacted the organization of microtubule in these cells that is known to promote emergence of cellular protrusions. Further, live-cell imaging of actin or-ganization revealed a correlation with cell shape, suggesting that actin plays a role in influencing pavement cell morphogenesis. In addition, disruption of actin leads to an increase in cell size along the leaf midrib, with cells being highly anisotropic due to reduced cell division. The reduction of cell division further im-pacted the morphology of the entire leaf, with the mutant leaves being more curved. These re-sults suggests that actin plays a pivotal role in regulating morphogenesis at the cellular and tis-sue scales thereby providing valuable insights into the role of the actin cytoskeleton in plant morphogenesis. N2 - Die Blätter weisen entlang der proximodistalen Achse Zellen mit unterschiedlich komplexer Form auf. Heterogenitäten in den Wachstumsrichtungen innerhalb einzelner Zellen führen zu einer solchen Komplexität der Zellform. Es wurden hochkomplexe und miteinander verbundene Genregulationsnetze und Signalwege identifiziert, die diese Prozesse steuern. Darüber hinaus haben die Organisation der Zytoskelettnetze und die mechanischen Eigenschaften der Zellwand großen Einfluss auf die Regulierung der Zellform. Die Forschung hat gezeigt, dass Mikrotubuli an der Regulierung der Zelluloseablagerung und der Richtung des Zellwachstums beteiligt sind. Eine umfassende Analyse der Regulierung des Aktin-Zytoskeletts bei der Regulierung der Zellform ist jedoch noch nicht ausreichend untersucht worden. Diese Arbeit liefert Beweise dafür, dass Aktin Aspekte des Zellwachstums, der Zellteilung und der gerichteten Expansion reguliert, die die Morphogenese der sich entwickelnden Blätter beeinflussen. Die puzzleartige Morphologie der epidermalen Zellen ist ein ideales System, um den komplexen Prozess der morphogenetischen Prozesse auf zellulärer Ebene zu untersuchen. Hier haben wir Bildgebungsstudien an lebenden Zellen durchgeführt, um die Entwicklung von Epidermiszellen unter Bedingungen zu verfolgen, bei denen das Aktin beeinträchtigt ist. Eine genetische Störung der beiden vorwiegend vegetativ exprimierten Aktin-Gene ACTIN2 und ACTIN7 führt zu einer verzögerten Entstehung der zellulären Wandausstülpungen in Epidermiszellen. Die Störung des Aktins wirkte sich auch auf die Organisation der Mikrotubuli in diesen Zellen aus, von denen bekannt ist, dass sie das Entstehen von Zellwandausstülpungen fördern. Darüber hinaus ergab die Live-Zell-Darstellung der Aktin-Organisation eine Korrelation mit der Zellform, was darauf hindeutet, dass Aktin eine Rolle bei der Morphogenese der Epidermiszellen spielt. Darüber hinaus führt die Unterbrechung von Aktin zu einer Zunahme der Zellgröße entlang der Blattmittelrippe, wobei die Zellen aufgrund der verringerten Zellteilung stark anisotrop sind. Die Verringerung der Zellteilung wirkte sich auch auf die Morphologie des gesamten Blattes aus, wobei die mutierten Blätter stärker gekrümmt waren. Diese Ergebnisse deuten darauf hin, dass Aktin eine zentrale Rolle bei der Regulierung der Morphogenese auf zellulärer und geweblicher Ebene spielt, was wertvolle Einblicke in die Rolle des Aktin-Zytoskeletts bei der Morphogenese von Pflanzen ermöglicht. KW - leaf KW - pavement cell KW - actin/microtubules KW - spatio-temporal regulation KW - Blatt KW - Pflasterzelle KW - Aktin/Mikrotubuli KW - räumlich-zeitliche Regulierung Y1 - 2023 ER -