TY - JOUR A1 - Adesina, Morenike O. A1 - Block, Inga A1 - Günter, Christina A1 - Unuabonah, Emmanuel Iyayi A1 - Taubert, Andreas T1 - Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO2 Composite JF - ACS Omega N2 - New TiO2 hybrid composites were prepared fromkaolinclay, predried and carbonized biomass, and titanium tetraisopropoxideand explored for tetracycline (TET) and bisphenol A (BPA) removalfrom water. Overall, the removal rate is 84% for TET and 51% for BPA.The maximum adsorption capacities (q (m))are 30 and 23 mg/g for TET and BPA, respectively. These capacitiesare far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change theadsorption capacity of the adsorbent. pH changes only slightly changeBPA adsorption, while a pH > 7 significantly reduces the adsorptionof TET on the material. The Brouers-Sotolongo fractal modelbest describes the kinetic data for both TET and BPA adsorption, predictingthat the adsorption process occurs via a complex mechanism involvingvarious forces of attraction. Temkin and Freundlich isotherms, whichbest fit the equilibrium adsorption data for TET and BPA, respectively,suggest that adsorption sites are heterogeneous in nature. Overall,the composite materials are much more effective for TET removal fromaqueous solution than for BPA. This phenomenon is assigned to a differencein the TET/adsorbent interactions vs the BPA/adsorbent interactions:the decisive factor appears to be favorable electrostatic interactionsfor TET yielding a more effective TET removal. Y1 - 2023 U6 - https://doi.org/10.1021/acsomega.3c00184 SN - 2470-1343 VL - 8 IS - 24 SP - 21594 EP - 21604 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Erler, Alexander A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Leenen, Mathias A1 - Pätzold, Stefan A1 - Ostermann, Markus A1 - Wójcik, Michał T1 - Mobile laser-induced breakdown spectroscopy for future application in precision agriculture BT - a case study JF - Sensors N2 - In precision agriculture, the estimation of soil parameters via sensors and the creation of nutrient maps are a prerequisite for farmers to take targeted measures such as spatially resolved fertilization. In this work, 68 soil samples uniformly distributed over a field near Bonn are investigated using laser-induced breakdown spectroscopy (LIBS). These investigations include the determination of the total contents of macro- and micronutrients as well as further soil parameters such as soil pH, soil organic matter (SOM) content, and soil texture. The applied LIBS instruments are a handheld and a platform spectrometer, which potentially allows for the single-point measurement and scanning of whole fields, respectively. Their results are compared with a high-resolution lab spectrometer. The prediction of soil parameters was based on multivariate methods. Different feature selection methods and regression methods like PLS, PCR, SVM, Lasso, and Gaussian processes were tested and compared. While good predictions were obtained for Ca, Mg, P, Mn, Cu, and silt content, excellent predictions were obtained for K, Fe, and clay content. The comparison of the three different spectrometers showed that although the lab spectrometer gives the best results, measurements with both field spectrometers also yield good results. This allows for a method transfer to the in-field measurements. KW - LIBS KW - precision agriculture KW - soil KW - multivariate methods KW - feature selection Y1 - 2023 U6 - https://doi.org/10.3390/s23167178 SN - 1424-8220 VL - 23 IS - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schlappa, Stephanie A1 - Bressel, Lena A1 - Reich, Oliver A1 - Münzberg, Marvin T1 - Advanced particle size analysis in high-solid-content polymer dispersions using photon density wave spectroscopy JF - Polymers N2 - High-solid-content polystyrene and polyvinyl acetate dispersions of polymer particles with a 50 nm to 500 nm mean particle diameter and 12-55% (w/w) solid content have been produced via emulsion polymerization and characterized regarding their optical and physical properties. Both systems have been analyzed with common particle-size-measuring techniques like dynamic light scattering (DLS) and static light scattering (SLS) and compared to inline particle size distribution (PSD) measurements via photon density wave (PDW) spectroscopy in undiluted samples. It is shown that particle size measurements of undiluted polystyrene dispersions are in good agreement between analysis methods. However, for polyvinyl acetate particles, size determination is challenging due to bound water in the produced polymer. For the first time, water-swelling factors were determined via an iterative approach of PDW spectroscopy error (X-2) minimization. It is shown that water-swollen particles can be analyzed in high-solid-content solutions and their physical properties can be assumed to determine the refractive index, density, and volume fraction in dispersion. It was found that assumed water swelling improved the reduced scattering coefficient fit by PDW spectroscopy by up to ten times and particle size determination was refined and enabled. Particle size analysis of the water-swollen particles agreed well with offline-based state-of-the-art techniques. KW - emulsion polymerization KW - multiple light scattering KW - photon density wave KW - spectroscopy KW - particle sizing KW - swelling of polymers Y1 - 2023 U6 - https://doi.org/10.3390/polym15153181 SN - 2073-4360 VL - 15 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Suslova, Elena N. A1 - Tran Dinh Phien, A1 - Shlykov, Sergey A. A1 - Kleinpeter, Erich T1 - Synthesis, conformational preferences in gas and solution, and molecular gear rotation in 1-(dimethylamino)-1-phenyl-1-silacyclohexane by gas phase electron diffraction (GED), LT NMR and theoretical calculations JF - Tetrahedron N2 - 1-(Dimethylamino)-1-phenyl-1-silacyclohexane 1, was synthesized, and its molecular structure and conformational properties studied by gas-phase electron diffraction (GED), low temperature C-13 NMR spectroscopy and quantum-chemical calculations. The predominance of the 1-Ph-ax conformer (1-Ph-eq:1-Ph-ax ratio of 20:80%, Delta G degrees (317 K) = -0.87 kcal/mol) in the gas phase is close to the theoretically estimated conformational equilibrium. In solution, low temperature NMR spectroscopy showed analyzable decoalescence of C-ipso and C(1,5) carbon signals in C-13 NMR spectra at 103 K. Opposite to the gas state in the freon solution employed (CD2Cl2/CHFCl2/CHFCl2 = 1:1:3), which is still liquid at 100 K, the 1-Ph-eq conformer was found to be the preferred one [(1-Ph-eq: 1-Ph-ax = 77%: 23%, K = 77/23 = 2.8; -Delta G degrees = -RT In K (at 103 K) = 0.44 +/- 0.1 kcal/mol]. When comparing 1 with 1-phenyl-1-(X)silacylohexanes (X = H, Me, OMe, F, Cl), studied so far, the trend of predominance of the Ph-ax conformer in the gas phase and of the Ph-eq conformer in solution is confirmed. KW - 1-(Dimethylamino)-1-phenyl-1-silacyclohexane KW - Conformational analysis KW - Gas phase electron diffraction KW - Low-temperature d-NMR KW - DFT KW - MP2 KW - M062X/6-311G** calculations Y1 - 2018 U6 - https://doi.org/10.1016/j.tet.2018.06.023 SN - 0040-4020 VL - 74 IS - 32 SP - 4299 EP - 4307 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Intramolecular carbene stabilization via 3c,2e bonding on basis of the magnetic criterion JF - Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of bent cyclobutylcarbene 8, 1,2-diboretane-3-ylidene 9, and some carbene analogues of boron 14-18 as most intriguing examples of carbenes, which can be stabilized as homoaromatic systems with 3c,2e bonding, have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values (actually, ring current effect/anisotropy effects as measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the degree of present 3c,2e-homoaromaticity. Results are confirmed by geometry (bond angles and bond lengths) and spectroscopic data, the delta(B-11)/ppm data and the C-13 chemical shifts of the carbene electron-deficient centre. KW - Cyclobutylcarbene KW - 1,2-diboretane-3-ylidene KW - 3c,2e-bonding KW - Through-space NMR shieldings (TSNMRS) KW - NICS Y1 - 2021 U6 - https://doi.org/10.1016/j.tet.2021.132357 SN - 0040-4020 SN - 1464-5416 VL - 95 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Klaumuenzer, Ute T1 - Quantification of the push-pull Effect in disubstituted alkynes - Application of occupation quotients pi*/pi and C-13 chemical shift differences Delta delta(C C) JF - Journal of molecular structure N2 - Structures, C-13 chemical shifts, and the occupation quotients of anti-bonding pi* and bonding pi orbitals of the C C triple bond along a series of push-pull alkynes (p)X-C6H4 C(O)-C C-NH-C6H4-Y(P) (X,Y= H, Me, OMe, NMe2, NO2, COMe, COOMe, F, Cl, Br) were computed at the DFT level (B3LYP/6-311G**) of theory. Both the stereochemistry (cis/trans-isomers) by steric twist and the push-pull character by both C-13 chemical shift differences (Delta delta(C C)) and the occupation quotient (pi(C C)/pi(C C)) were studied; the latter two parameters can be readily employed to precisely quantify the push-pull effect in alkynes. (C) 2014 Elsevier B.V. All rights reserved. KW - Push-pull effect KW - C-13 chemical shift difference Delta delta(C C) KW - Occupation quotient pi*/pi KW - Push-pull alkynes KW - Steric hindrance Y1 - 2014 U6 - https://doi.org/10.1016/j.molstruc.2014.05.072 SN - 0022-2860 SN - 1872-8014 VL - 1074 SP - 193 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lazareva, Nataliya F. A1 - Albanov, Alexander I. A1 - Shainyan, Bagrat A. A1 - Kleinpeter, Erich T1 - Synthesis and conformational properties of substituted 1,4,2-oxazasilinanes low temperature NMR study and quantum chemical calculations JF - Tetrahedron N2 - A number of N-substituted 2,2-dimethyl-1,4,2-oxazasilinanes 1 were synthesized and studied by variable temperature dynamic H-1 and C-13 NMR spectroscopy, room temperature N-15 NMR spectroscopy and theoretical calculations at the DFT and MP2 levels of theory. Both the preferred conformers were assigned and the barrier to the ring inversion of the saturated six-membered ring determined. From 1 the corresponding methyl iodide salts were produced, their structure studied by X-ray analysis and found to be in excellent agreement with the results of the theoretical calculations. KW - 1,4,2-Oxazasilinanes KW - Conformational analysis KW - Dynamic NMR KW - X-ray analysis KW - Quantum chemical calculations Y1 - 2012 U6 - https://doi.org/10.1016/j.tet.2011.11.077 SN - 0040-4020 VL - 68 IS - 4 SP - 1097 EP - 1104 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Kleinpeter, Erich A1 - Shainyan, Bagrat A. T1 - Very low-temperature dynamic Si-29 NMR study of the conformational equilibrium of (1,1-phenyl-1,1-silacyclohex-1-yl)disiloxane T2 - Magnetic resonance in chemistry Y1 - 2019 U6 - https://doi.org/10.1002/mrc.4870 SN - 0749-1581 SN - 1097-458X VL - 57 IS - 6 SP - 317 EP - 319 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kirpichenko, Svetlana A1 - Shainyan, Bagrat A. A1 - Kleinpeter, Erich A1 - Shlykov, Sergey A. A1 - Tran Dinh Phien, A1 - Albanov, Alexander T1 - Synthesis of 3-fluoro-3-methyl-3-silatetrahydropyran and its conformational preferences in gas and solution by GED, NMR and theoretical calculations JF - Tetrahedron N2 - The 3,3-disubstitued 3-silaheterocyclohexane with an electronegative substituent at silicon, 3-fluoro-3-methyl-3-silatetrahydropyran 1, was synthesized, and its molecular structure and conformational properties studied by gas-phase electron diffraction (GED) and low temperature C-13 and F-19 NMR spectroscopy. Quantum-chemical calculations were carried out both for the isolated species and Hcomplexes in gas and in polar medium. The predominance of the 1-FeqMeax conformer (1-F-eq:1-F-ax ratio of 65:35, Delta G degrees = 0.37 kcal/mol) determined from GED is close to the theoretically estimated conformational equilibrium, especially at the DFT level. In solution, low temperature NMR spectroscopy showed no decoalescence of the signals in C-13 (down to 95 K) and F-19 NMR spectra (down to 123 K). However, the calculated F-19 chemical shift of -173.6 ppm for the 1-FeqMeax conformer practically coincides with the experimentally observed value (-173 to -175 ppm) as distinct from that for the 1-FaxMeeq conformer (-188.8 ppm), suggesting compound 1 to be anancomeric in solution, in compliance with its theoretical and experimental preference in the gas phase. KW - 3-Fluoro-3-methyl-3-silatetrahydropyran KW - Conformational analysis KW - Gas phase electron diffraction KW - Low-temperature NMR KW - DFT KW - MP2 and CCSD(T) calculations Y1 - 2018 U6 - https://doi.org/10.1016/j.tet.2018.02.055 SN - 0040-4020 VL - 74 IS - 15 SP - 1859 EP - 1867 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Characterization and quantification of quasi-aromaticity by spatial magnetic properties (TSNMRS) JF - Tetrahedron N2 - The spatial magnetic properties (Through Space NMR Shieldings-TSNMRS) of various types of structures with suggested quasi-aromaticity (a summaring topic: in detail push pull, captodative, chelate, supramolecular aromaticity, etc.) have been computed, are visualized as Isochemical Shielding Surfaces (ICSS) of various size/direction and examined subject to identify and quantify present (partial) aromaticity. While the TSNMRS approach proves really helpful [even in cases of (4n+2) pi-electron cyclic moieties formed via non-covalent polar interactions] quasi-aromaticity suggested for enol forms of 1,3-dicarbonyl compounds via resonance-assisted intramolecular and intermolecular hydrogen bonding cannot be confirmed. (C) 2015 Elsevier Ltd. All rights reserved. KW - Quasi-aromaticity KW - Ring current effect KW - Anisotropy effect KW - Theoretical calculations KW - ICSS KW - TSNMRS Y1 - 2015 U6 - https://doi.org/10.1016/j.tet.2015.06.019 SN - 0040-4020 VL - 71 IS - 33 SP - 5275 EP - 5284 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Belyakov, Alexander V. A1 - Sigolaev, Yurii F. A1 - Khramov, Alexander N. A1 - Kleinpeter, Erich T1 - Molecular Structure and Conformational Analysis of 1-Phenyl-1-X-1-Silacyclohexanes (X = F, Cl) by Electron Diffraction, Low-Temperature NMR, and Quantum Chemical Calculations JF - The journal of organic chemistry N2 - The molecular structure and conformational preferences of 1-phenyl-1-X-1-silacyclohexanes C5H10Si(Ph,X) (X = F (3), Cl (4)) were studied by gas-phase electron diffraction, low-temperature NMR spectroscopy, and high-level quantum chemical calculations. In the gas phase only three (3) and two (4) stable conformers differing in the axial or equatorial location of the phenyl group and the angle of rotation about the Si-C-ph bond (axi and axo denote the Ph group lying in or out of the X-Si-C-ph plane) contribute to the equilibrium. In 3 the ratio Ph-eq:Ph-axo:Ph-axi is 40(12):55(24):5 and 64:20:16 by experiment and theory, respectively. In 4 the ratio Ph-eq:Ph-axo is 79(15):21(15) and 71:29 by experiment and theory (M06-2X calculations), respectively. The gas-phase electron diffraction parameters are in good agreement with those obtained from theory at the M06-2X/aug-ccPVTZ and MP2/aug-cc-pVTZ levels. Unlike the case for M06-2X, MP2 calculations indicate that 3-Ph-eq conformer lies 0.5 kcal/mol higher than the 3-Ph-axo, conformer. As follows from QTAIM analysis, the phenyl group is more stable when it is located in the axial position but produces destabilization of the silacyclohexane ring: By low temperature NMR spectroscopy the six-membered ring interconversion could be frozen, at 103 K and the present conformational equilibria of 3 and 4 could be determined. The ratio of the conformers is 3-Ph-eq:3-Ph-ax = (75-77):(23-25) and 4-Ph-eq:4-Ph-ax = 82:18. Y1 - 2017 U6 - https://doi.org/10.1021/acs.joc.6b02538 SN - 0022-3263 VL - 82 IS - 1 SP - 461 EP - 470 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Lazareva, Nataliya F. A1 - Shainyan, Bagrat A. A1 - Schilde, Uwe A1 - Chipanina, Nina N. A1 - Oznobikhina, Larisa P. A1 - Albanov, Alexander I. A1 - Kleinpeter, Erich T1 - Synthesis, molecular structure, conformational analysis, and chemical properties of silicon-containing derivatives of quinolizidine JF - The journal of organic chemistry N2 - A silicon analog of quinolizidine 3,3,7,7-tetramethylhexahydro-1H-[1,4,2]oxazasilino[4,5-d][1,4,2]oxazasilin-9a-yl)methanol 3 was synthesized. X-ray diffraction analysis confirmed the trans configuration and low temperature NMR spectroscopy both the flexibility (barrier of interconversion 5.8 kcal mol(-1)) and the conformational equilibrium (chair-chair and chair-twist conformers) of the compound. The relative stability of the different isomers/conformers of 3 was calculated also at the MP2/6-311G(d,p) level of theory. Intra- and intermolecular hydrogen bonding in 3 and the appropriate equilibrium between free and self-associated molecules was studied in solvents of different polarity. Both the N-methyl quaternary ammonium salt and the O-trimethylsilyl derivative of 3 could be obtained and their structure determined. Y1 - 2012 U6 - https://doi.org/10.1021/jo202658n SN - 0022-3263 VL - 77 IS - 5 SP - 2382 EP - 2388 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Linker, Torsten T1 - Synthesis and NMR spectroscopic conformational analysis of esters of 4-hydroxy-cyclohexanone-the more polar the molecule the more stable the axial conformer JF - Tetrahedron N2 - The esters of 4-hydroxy-cyclohexanone and a series of carboxylic acids R-COOH with R of different electronic and steric influence (R=Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, sec-Bu, t-Bu, CF3, CH2Cl, CHCl2, CCl3, CH2Br, CHBr2, and CBr3) were synthesized and the conformational equilibria studied by H-1 and C-13 NMR spectroscopy at 103 K and at 295 K, respectively. The geometry of optimized structures of the axial 'equatorial chair conformers was computed at the ab initio MO and DFT levels of theory. Only one preferred conformation was obtained for the axial and the equatorial conformer as well. When comparing the conformational equilibria of the cyclohexanone esters with those of the corresponding cyclohexyl esters a certain polarity contribution of the cyclohexanone framework was revealed, which is independent of the substituent effects and increases the stability of the axial conformers by a constant amount. KW - 4-Substituted cyclohexanones KW - Conformational analysis KW - Dynamic NMR KW - Simulation of H-1 NMR spectra KW - Quantum chemical calculations KW - ALTONA equation Y1 - 2012 U6 - https://doi.org/10.1016/j.tet.2012.01.022 SN - 0040-4020 VL - 68 IS - 10 SP - 2363 EP - 2373 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Neuvonen, Kari A1 - Neuvonen, Helmi A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Taft equation in the light of NBO computations introduction of a novel polar computational substituent constant scale sigma(q)* for alkyl groups JF - Computational and theoretical chemistry N2 - The validity of the Taft equation: log(k(R)/k(CH3)) = rho*sigma* + delta E-S was studied with the aid of NBO computational results concerning cyclohexyl esters RCOOC6H11 [R = Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec-Butyl, tert-Butyl, Neopentyl, CH(CH2CH3)(2), CH(CH3)C(CH3)(3), C(CH3)(2)CH2CH3, C(CH3)(2)C(CH3)(3), CH(CH3)(Np), CH(iPr)(tBu), C(Me)(Et)(iPr), C(Et)(2)(tBu) or C(Et)(iPr)(tBu)]. It was proved that the sigma*(alkyl) value is a composite substitutent constant including the polar and steric contributions. A novel computational sigma(q)* substituent constant scale is presented based on the NBO atomic charges of the alpha-carbon and the computational total steric exchange energies E(ster) of the cyclohexyl esters specified above. The method used offers a useful way to calculate sigma*(alkyl) values for alkyl groups for which experimental Taft's polar sigma* parameters are not available. KW - NBO analysis KW - Taft equation KW - Polar substituent constant KW - Steric effect Y1 - 2012 U6 - https://doi.org/10.1016/j.comptc.2011.11.044 SN - 2210-271X VL - 981 IS - 2 SP - 52 EP - 58 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kammer, Stefan A1 - Starke, Ines A1 - Pietrucha, Andreas A1 - Kelling, Alexandra A1 - Mickler, Wulfhard A1 - Schilde, Uwe A1 - Dosche, Carsten A1 - Kleinpeter, Erich A1 - Holdt, Hans-Jürgen T1 - 1,12-Diazaperylene and 2,11-dialkylated-1,12-diazaperylene iridium(III) complexes [Ir((CN)-N-boolean AND)(2)((NN)-N-boolean AND)]PF6: new supramolecular assemblies JF - Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry N2 - A series of new monocationic iridium(III) complexes [Ir((CN)-N-boolean AND)(2)((NN)-N-boolean AND)]PF6 with "large-surface" alpha,alpha'-diimin ligands (NN)-N-boolean AND (dap = 1,12-diazaperylene, dmedap = 2,11-dimethyl-1,12-diazaperylene, dipdap = 2,11-diisopropyl-1,12-diazaperylene) and different cyclometalating ligands (CN)-N-boolean AND (piq = 1-phenylisoquinoline, bzq = benzo[h]quinoline, ppz = 1-phenylpyrazole, thpy = 2-(2-thienyl)pyridine, ppy = 2-phenylpyridine, meppy = 2-(4-methylphenyl)pyridine, dfppy = 2-(2,4-difluorophenyl)pyridine) were synthesized. The solid structures of the complexes [Ir(piq)(2)(dap)]PF6, [Ir(bzq)(2)(dap)]PF6, [Ir(ppy)(2)(dipdap)]PF6, [Ir(piq)(2)(dmedap)]PF6, [Ir(ppy)(2)(dap)]PF6 and [Ir(ppz)(2)(dap)]PF6 are reported. In [Ir(piq)(2)(dap)]PF6, the dap ligand and one of the piq ligands of each cationic complex are involved in pi-pi stacking interactions forming supramolecular channels running along the crystallographic c axis. In the crystalline [Ir(bzq)(2)(dap)]PF6 pi-pi stacking interactions between the metal complexes lead to the formation of a 2D layer structure. In addition, CH-pi interactions were found in all compounds, which are what stabilizes the solid structure. In particular, a significant number of them were found in [Ir(piq)(2)(dap)]PF6 and [Ir(bzq)(2)(dap)]PF6. The crystal structures of [Ir(ppy)(2)(dipdap)]PF6 and [Ir(ppy)(2)(dmedap)]PF6 are also presented, being the first examples of bis-cyclometalated iridium(III) complexes with phenanthroline-type alpha,alpha'-diimin ligands bearing bulky alkyl groups in the neighbourhood of the N-donor atoms. These ligands implicate a distorted octahedral coordination geometry that in turn destabilized the Ir-N-N boolean AND N bonds. The new iridium (III) complexes are not luminescent. All compounds show an electrochemically irreversible anodic peak between 1.15 and 1.58 V, which is influenced by the different cyclometalated ligands. All of the new complexes show two reversible successive one-electron "large-surface" ligand-centred reductions around -0.70 V and -1.30 V. Electrospray ionisation mass spectrometry (ESI-MS) and collision induced decomposition (CID) measurements were used to investigate the stability of the new complexes. Thereby, the stability agreed well with the order of the Ir-N-N boolean AND N bond lengths. Y1 - 2012 U6 - https://doi.org/10.1039/c2dt30412k SN - 1477-9226 VL - 41 IS - 34 SP - 10219 EP - 10227 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kleinpeter, Erich T1 - Conformational preferences of Si-Ph,H and Si-Ph,Me silacyclohexanes and 1,3-thiasilacyclohexanes. Additivity of conformational energies in 1,1-disubstituted heterocyclohexanes JF - Tetrahedron N2 - The conformational equilibria of 1-phenyl-1-silacyclohexane 1, 3-phenyl-1,3-thiasilacyclohexane 2, 1-methyl-1-phenyl-1-silacyclohexane 3, and 3-methyl-3-phenyl-1,3-thiasilacyclohexane 4 have been studied for the first time by low temperature C-13 NMR spectroscopy at 103 K. Predominance of the equatorial conformer of compound 1 (Ph-eq/Ph-ax=78%:22%) is much less than in its carbon analog, phenylcyclohexane (nearly 100% of Ph-eq). And in contrast to 1-methyl-1-phenylcyclohexane, the conformers with the equatorial Ph group are predominant for compounds 3 and 4: at 103 K, Ph-eq/Ph-ax ratios are 63%:37% (3) and 68%:32% (4). As the Si-C bonds are elongated with respect to C-C bonds, the barriers to ring inversion are only between 5.2-6.0 (ax -> eq) and 5.4-6.0 (eq -> ax) kcal mol(-1). Parallel calculations at the DFT and MP2 level of theory (as well as the G2 calculations for compound 1) show qualitative agreement with the experiment. The additivity/nonadditivity of conformational energies of substituents on cyclohexane and silacyclohexane derivatives is analyzed. The geminally disubstituted cyclohexanes containing a phenyl group show large deviations from additivity, whereas in 1-methyl-1-phenyl-1-silacyclohexane and 3-methyl-3-phenyl-1,3-thiasilacyclohexane the effects of the methyl and phenyl groups are almost additive. The reasons for the different conformational preferences in carbocyclic and heterocyclic compounds are analyzed using the homodesmotic reactions approach. KW - Conformational analysis KW - Heterocycles KW - Dynamic NMR KW - Theoretical calculations KW - Additivity of conformational energies Y1 - 2012 U6 - https://doi.org/10.1016/j.tet.2011.10.082 SN - 0040-4020 VL - 68 IS - 1 SP - 114 EP - 125 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Balci, Kubilay A1 - Yapar, G. A1 - Akkaya, Y. A1 - Akyuz, S. A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - A conformational analysis and vibrational spectroscopic investigation on 1,2-bis(o-carboxyphenoxy) ethane molecule JF - Vibrational spectroscopy : an international journal devoted to applications of infrared and raman spectroscopy N2 - The minima on the potential energy surface of 1,2-bis(o-carboxyphenoxy)ethane (CPE) molecule in its electronic ground state were searched by a molecular dynamics simulation performed with MM2 force field. For each of the found minimum-energy conformers, the corresponding equilibrium geometry, charge distribution, HOMO-LUMO energy gap, force field, vibrational normal modes and associated IR and Raman spectral data were determined by means of the density functional theory (DFT) based electronic structure calculations carried out by using B3LYP method and various Pople-style basis sets. The obtained theoretical data confirmed the significant effects of the intra- and inter-molecular hydrogen bonding interactions on the conformational structure, force field, and group vibrations of the molecule. The same data have also revealed that two of the determined stable conformers, both of which exhibit pseudo-crown structure, are considerably more favorable in energy to the others and accordingly provide the major contribution to the experimental spectra of CPE. In the light of the improved vibrational spectral data obtained within the "SQM FF" methodology and "Dual Scale Factors" approach for the monomer and dimer forms of these two conformers, a reliable assignment of the fundamental bands observed in the experimental room-temperature IR and Raman spectra of the molecule was given, and the sensitivities of its group vibrations to conformation, substitution and dimerization were discussed. KW - Glycol podands KW - Salicylic acid KW - IR and Raman spectra KW - SQM FF KW - Dual Scale Factors Y1 - 2012 U6 - https://doi.org/10.1016/j.vibspec.2011.11.011 SN - 0924-2031 VL - 58 IS - 1-2 SP - 27 EP - 43 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Suslova, Elena N. A1 - Kleinpeter, Erich T1 - Conformational analysis of 4,4-dimethyl-1-(trifluoromethylsulfonyl)-1,4-azasilinane and 2,2,6,6-tetramethyl-4-(trifluoromethylsulfonyl)-1,4,2,6-oxazadisilinane JF - Journal of physical organic chemistry N2 - 4,4-Dimethyl-1-(trifluoromethylsulfonyl)-1,4-azasilinane 1 and 2,2,6,6-tetramethyl-4-(trifluoromethylsulfonyl)-1,4,2,6-oxazadisilinane 2 were studied by variable temperature dynamic 1H, 13C, 19F NMR spectroscopy and theoretical calculations at the DFT (density functional theory) and MP2 (Moller-Plesset 2) levels of theory. Both kinetic (barriers to ring inversion) and thermodynamic data (frozen conformational equilibria) could be obtained for the two compounds. The computations revealed two minima on the potential energy surface for molecules 1 and 2 corresponding to the rotamers with the CF3SO2 group directed inward and outward the ring, the latter being 0.20.4 kcal/mol (for 1) and 1.1 kcal/mol (for 2) more stable than the former. The vibrational calculations at the DFT and MP2 levels of theory give the values of the free energy difference Delta G degrees for the 'inward' reversible arrow 'outward' equilibrium consistent with those determined from the experimentally measured ratio of the rotamers. The structure of crystalline compound 2 was ascertained by X-ray diffraction analysis. KW - conformational analysis KW - dynamic NMR KW - quantum chemical calculations KW - 2 KW - 6-disilamorpholines KW - 4-silapiperidines Y1 - 2012 U6 - https://doi.org/10.1002/poc.1882 SN - 0894-3230 VL - 25 IS - 1 SP - 83 EP - 90 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Baranac-Stojanovic, Marija A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Is the conventional interpretation of the anisotropic effects of C=C double bonds and aromatic rings in NMR spectra in terms of the p-electron shielding/deshielding contributions correct? JF - Chemistry - a European journal N2 - Based on the nucleus-independent chemical shift (NICS) concept, isotropic magnetic shielding values have been computed along the three Cartesian axes for ethene, cyclobutadiene, benzene, naphthalene, and benzocyclobutadiene, starting from the molecular/ring center up to 10 angstrom away. These through-space NMR spectroscopic shielding (TSNMRS) values, which reflect the anisotropic effects, have been broken down into contributions from localized- and canonical molecular orbitals (LMOs and CMOs); these contributions revealed that the proton NMR spectroscopic chemical shifts of nuclei that are spatially close to the C?C double bond or the aromatic ring should not be explained in terms of the conventionally accepted p-electron shielding/deshielding effects. In fact, these effects followed the predictions only for the antiaromatic cyclobutadiene ring. KW - ab initio calculations KW - anisotropic effects KW - NMR spectroscopy KW - nucleus-independent chemical shift KW - pi interactions Y1 - 2012 U6 - https://doi.org/10.1002/chem.201101882 SN - 0947-6539 VL - 18 IS - 1 SP - 370 EP - 376 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kirpichenko, Svetlana V. A1 - Kleinpeter, Erich T1 - Synthesis and conformational properties of 1,3-dimethyl-3-phenyl-1,3-azasilinane low temperature dynamic NMR and computational study JF - Arkivoc : free online journal of organic chemistry N2 - 1,3-Dimethyl-3-phenyl-1,3-azasilinane was synthesized and its conformational behavior was studied by the low temperature NMR spectroscopy and quantum chemical calculations. The compound was shown to exist as an equilibrium mixture of the PhaxMeeq and PheqMeax chair conformers with the N-methyl substituent in equatorial position. The barrier to ring inversion was also determined. KW - 1,3-Dimethyl-3-phenyl-1,3-azasilinane KW - conformational analysis KW - low temperature NMR spectroscopy KW - quantum chemical calculations Y1 - 2012 SN - 1551-7004 IS - 24 SP - 175 EP - 185 PB - ARKAT CY - Gainesville ER -