TY - JOUR A1 - Kietzke, Thomas A1 - Stiller, Burkhard A1 - Landfester, Katharina A1 - Montenegro, Rivelino V. D. A1 - Neher, Dieter T1 - Probing the local optical properties of layers prepared from polymer nanoparticles N2 - It is well known that the performance of solar cells based on a blend of hole-accepting and electron-accepting conjugated polymers as the active material depend crucially on the length scale of the resulting phase separated morphology. However, a direct control of this morphology is difficult if the layer is prepared from an organic solvent. To circumvent this difficulty, recently a universal method to fabricate defined nano-structured blend layer using nanoparticles dispersed in water was demonstrated. These nanoparticles were prepared with the miniemulsion method, which allows for the preparation of semiconducting polymer nanospheres (SPNs) with diameters in the range of 30 to 300 nanometres. Since the process starts from the active material dissolved in a common solvent, it can be applied to the fabrication of nanoparticles of blends of polymers with oligomers or even with inorganic materials. We present here for the first time scanning near field optical microscopy (SNOM) investigations on these novel nanostructured polymer layers. We show that by spin-coating a mixture of two different dispersions a nanoparticle monolayer with a statistically distribution of the nanoparticles can be obtained. Mixing conjugated polymer nanoparticles with some inert particles like polystyrene beads may allow for the preparation of nano-sized light emitters Y1 - 2005 SN - 0379-6779 ER - TY - JOUR A1 - Karageorgiev, Peter A1 - Neher, Dieter A1 - Schulz, Burkhard A1 - Stiller, Burkhard A1 - Pietsch, Ullrich A1 - Giersig, Michael A1 - Brehmer, Ludwig T1 - From anisotropic photo-fluidity towards nanomanipulation in the optical near-field N2 - An increase in random molecular vibrations of a solid owing to heating above the melting point leads to a decrease in its long-range order and a loss of structural symmetry. Therefore conventional liquids are isotropic media. Here we report on a light-induced isothermal transition of a polymer film from an isotropic solid to an anisotropic liquid state in which the degree of mechanical anisotropy can be controlled by light. Whereas during irradiation by circular polarized light the film behaves as an isotropic viscoelastic fluid, it shows considerable fluidity only in the direction parallel to the light field vector under linear polarized light. The fluidization phenomenon is related to photoinduced motion of azobenzene-functionalized molecular units, which can be effectively activated only when their transition dipole moments are oriented close to the direction of the light polarization. We also describe here how the photofluidization allows nanoscopic elements of matter to be precisely manipulated Y1 - 2005 SN - 1476-1122 ER - TY - JOUR A1 - Mechau, Norman A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Dielectric and mechanical properties of azobenzene polymer layers under visible and ultraviolet irradiation N2 - Photoinduced changes in the mechanical and dielectric properties of azobenzene polymer films were measured utilizing the method of electromechanical spectroscopy. The measurements revealed a strong correlation between the time- dependent behavior of the plate compliance and the dielectric constant under irradiation. Actinic light causes a light softening of the film that also manifests itself in the increase of the dielectric constant, whereas ultraviolet irradiation results in an initial plasticization of the film followed by its hardening. The latter is accompanied by decrease of the dielectric constant. A semiquantitative model based on the kinetics of the photoisomerization process in azobenzene polymers is proposed. We assume that both visible and ultraviolet irradiation increase the free volume in the layer due to photoisomerization. Additionally, ultraviolet light increases the modulus of the polymer matrix due to the presence of a high density of azobenzene moieties in the cis state. These assumptions allowed us to reproduce the time- dependent behavior of the bulk compliance as well as the dielectric constant at different irradiation intensities, for both visible and ultraviolet light, with only two adjustable parameters Y1 - 2005 SN - 0024-9297 ER - TY - JOUR A1 - Egbe, D. A. M. A1 - Kietzke, Thomas A1 - Carbonnier, B. A1 - Muhlbacher, D. A1 - Horhold, H. H. A1 - Neher, Dieter A1 - Pakula, T. T1 - Synthesis, characterization, and photophysical, electrochemical, electroluminescent, and photovoltaic properties of yne-containing CN-PPVs N2 - Alkoxy-substituted CN-containing phenylene-vinylene-alt-phenylene-ethynylene hybrid polymers (CN-PPV-PPE), 3a, 3b, and 7a, were obtained from luminophoric dialdehydes 1 by step growth polymerization via Knoevenagel reaction as high molecular-weight materials. Corresponding CN-free polymers 3c and 7b and an ethynylene-free polymer 5 with similar side chains were synthesized for the purpose of comparison. The chemical structures of the polymers were confirmed by IR, H-1 and C-13 NMR, and elemental analysis. Thermal characterization was conducted by means of thermogravimetric analysis and differential scanning calorimetry. Morphology was investigated by means of optical microscopy and small-angle light scattering. The final morphologies are determined by the molecular characteristics (side chains volume fraction, backbone stiffness) of the studied polymers. All the CN-containing polymers 3b, 5, and 7a exhibit higher fluorescence quantum yield in solid state (50 to 60%), but lower quantum yields (12-40%) in dilute chloroform solution, in total contrast to CN-free polymers 3c, 3d, and 7b. Identical optical, E-g(opt), and electrochemical band gap energies, E- g(ec), were obtained for 3b, 3c and 3d with intrinsic self-assembly ability, whereas a discrepancy, DeltaE(g), was observed in the cases of the fully substituted polymers 5, 7a, and 7b, whose values are dependent on the level of backbone stiffness and length of the side groups combined with the presence or absence of CN units. The incorporation of CN units in 3b and 7a lowers their respective LUMO level by 220 and 350 meV compared to their corresponding CN-free counterparts 3c and 7b, suggesting an improvement of the electron-accepting strength. Polymers 3b and 7a are efficient electron acceptors suitable for photovoltaic application. The experiments indicate that 3b is a better electron acceptor when used together with M3EH-PPV, but transport properties seem to be better for 7a. With 3b, high external quantum efficiencies of up to 23%, an open circuit voltage of up to 1.52 V, and a white light energy efficiency of 0.65% could be realized in bilayer solar cell devices. LED-devices of configuration ITO/PEDOT:PSS/polymer/Ca/Al from 3b, 3c, 7a, and 7b showed low turn-on voltages between 2 and 2.5 V. The CN-free polymers 3c and 7b exhibit far better EL parameters than their corresponding CN containing counterparts 3b and 7a Y1 - 2004 ER - TY - JOUR A1 - Zen, Achmad A1 - Saphiannikova, Marina A1 - Neher, Dieter A1 - Asawapirom, Udom A1 - Scherf, Ullrich T1 - Comparative study of the field-effect mobility of a copolymer and a binary blend based on poly(3- alkylthiophene)s N2 - The performance of highly soluble regioregular poly[ (3-hexylthiophene)-co-(3-octylthiophetie)] (P3HTOT) as a semiconducting material in organic field-effect transistors (OFETs) is presented in comparison to that of the corresponding homopolymers. Transistors made from as-prepared layers of P3HTOT exhibit a mobility of ca. 7 x 10(-3) cm(2) V-1 s(-1), which is comparable to the performance of transistors made from as-prepared poly(3-hexylthiophene) (P3HT) and almost 6 times larger than the mobility of transistors prepared with poly(3-octylthiophene) (P3OT). On the other hand, the solubility parameter delta(p) of P3HTOT is close to that of the highly soluble P3OT. Moreover, compared to a physical blend of poly(3-hexylthiophene) and poly(3-octylthiophene), the mobility of P3HTOT devices is almost twice as large and the performance does not degrade upon annealing at elevated temperatures. Therefore, the copolymer approach outlined here may be one promising step toward an optimum balance between a Sufficient processability of the polymers from common organic solvents, a high solid state order, and applicable OFET performances Y1 - 2005 SN - 0897-4756 ER - TY - JOUR A1 - Kietzke, Thomas A1 - Neher, Dieter A1 - Kumke, Michael Uwe A1 - Montenegro, Rivelino V. D. A1 - Landfester, Katharina A1 - Scherf, Ullrich T1 - A nanoparticle approach to control the phase separation in polyfluorene photovoltaic devices N2 - Polymer solar cell devices with nanostructured blend layers have been fabricated using single- and dual- component polymer nanospheres. Starting from an electron-donating and an electron-accepting polyfluorene derivative, PFB and F8BT, dissolved in suitable organic solvents, dispersions of solid particles with mean diameters of ca. 50 nm, containing either the pure polymer components or a mixture of PFB and F8BT in each particle, were prepared with the miniemulsion process. Photovoltaic devices based on these particles have been studied with respect to the correlation between external quantum efficiency and layer composition. It is shown that the properties of devices containing a blend of single-component PFB and F8BT particles differ significantly from those of solar cells based on blend particles, even for the same layer composition. Various factors determining the quantum efficiency in both kinds of devices are identified and discussed, taking into account the spectroscopic properties of the particles. An external quantum efficiency of ca. 4% is measured for a device made from polymer blend nanoparticles containing PFB:F8BT at a weight ratio of 1:2 in each individual nanosphere. This is among the highest values reported so far for photovoltaic cells using this material combination Y1 - 2004 ER - TY - JOUR A1 - Bagnich, Sergey A. A1 - Bassler, H. A1 - Neher, Dieter T1 - Sensitized phosphorescence of benzil-doped ladder-type methyl-poly(para-phenylene) N2 - The delayed luminescence and phosphorescence of ladder-type methyl-poly(para-phenylene) (MeLPPP) doped with benzil at a concentration of 20% by weight has been measured. The introduction of benzil leads to a dramatic reduction of the polymer singlet emission. At the same time, a new band with maximum at 611 nm appears, corresponding to the phosphorescence of MeLPPP. The phosphorescence decay on the short time scale is close to an exponential law with a time decay of 15 ms. This indicates that benzil can efficiently sensitize the phosphorescence of the polymer. In addition, a broad and featureless emission is observed in the delayed luminescence spectra of benzil-doped MeLPPP, which is attributed to an exciplex formed between the polymer host and the dopant. We further observe that the delayed fluorescence is enhanced by the addition of benzil. It is concluded that the delayed fluorescence of benzil-doped MeLPPP is mainly due to the annihilation of triplet excitons on the polymer. Finally, efficient triplet-triplet energy transfer from the benzil-doped polymer to the red-emitting phosphorescent dye Pt(II)octaethylporphyrin is established. (C) 2004 American Institute of Physics Y1 - 2004 SN - 0021-9606 ER - TY - JOUR A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Thermodynamic theory of light-induced material transport in amorphous azobenzene polymer films N2 - It was discovered 10 years ago that the exposure of an initially flat layer of an azobenzene-containing polymer to an inhomogeneous light pattern leads to the formation of surface relief structures, accompanied by a mass transport over several micrometers. However, the driving force of this process is still unclear. We propose a new thermodynamic approach that explains a number of experimental findings including the light-induced deformation of free-standing films and the formation of surface relief gratings for main inscription geometries. Our basic assumption is that under homogeneous illumination, an initially isotropic sample should stretch itself along the polarization direction to compensate the entropy decrease produced by the photoinduced reorientation of azobenzene chromophores. The magnitude of the elastic stress, estimated by taking the derivative of the free energy over the sample deformation, is shown to be sufficient to induce plastic deformation of the polymer film. Orientational distributions of chromophores predicted by our model are compared with those deduced from Raman intensity measurements Y1 - 2005 SN - 1520-6106 ER - TY - JOUR A1 - Kulikovsky, Lazar A1 - Neher, Dieter A1 - Mecher, E. A1 - Meerholz, Klaus A1 - Horhold, H. H. A1 - Ostroverkhova, O. T1 - Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite N2 - All parameters describing the charge carrier dynamics in a poly(phenylene vinylene)-based photorefractive (PR) composite relevant to PR grating dynamics were determined using photoconductivity studies under various illumination conditions. In particular, the values of the coefficients for trap filling and recombination of charges with ionized sensitizer molecules could be extracted independently. It is concluded that the PR growth time without preillumination is mostly determined by the competition between deep trap filling and recombination with ionized sensitizer molecules. Further, the pronounced increase in PR speed upon homogeneous preillumination (gating) as reported recently is quantitatively explained by deep trap filling Y1 - 2004 SN - 1098-0121 ER - TY - JOUR A1 - Bagnich, Sergey A. A1 - Bassler, H. A1 - Neher, Dieter T1 - Exciton dynamics in ladder-type methyl-poly(para-phenylene) doped with phosphorescent dyes N2 - The luminescence of a ladder-type methyl-poly(para-phenylene) (MeLPPP) doped with platinum-porphyrin dye PtOEP covering the concentration 10(-3)-5% by weight has been measured employing cw and transient techniques. Upon excitation into the range of absorption of the host, strong phosphorescence of the dopant is observed. Possible ways of populating the dopant triplet state are considered. (c) 2004 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0022-2313 ER - TY - JOUR A1 - Galbrecht, Frank A1 - Yang, X. H. A1 - Nehls, B. S. A1 - Neher, Dieter A1 - Farrell, Tony A1 - Scherf, Ullrich T1 - Semiconducting polyfluorenes with electrophosphorescent on-chain platinum-salen chromophores N2 - The synthesis of statistical fluorene-type copolymers with on-chain Pt-salen phosphorescent units and their use in electrophosphorescent OLEDs is reported Y1 - 2005 SN - 1359-7345 ER - TY - JOUR A1 - Stiller, Burkhard A1 - Karageorgiev, Peter A1 - Geue, Thomas A1 - Morawetz, Knut A1 - Saphiannikova, Marina A1 - Mechau, Norman A1 - Neher, Dieter T1 - Optically induced mass transport studied by scanning near-field optical- and atomic force microscopy N2 - Some functionalised thin organic films show a very unusual property, namely the light induced material transport. This effect enables to generate three-dimensional structures on surfaces of azobenzene containing films only caused by special optical excitation. The physical mechanisms underlying this phenomenon have not yet been fully understood, and in addition, the dimensions of structures created in that way are macroscopic because of the optical techniques and the wavelength of the used light. In order to gain deeper insight into the physical fundamentals of this phenomenon and to open possibilities for applications it is necessary to create and study structures not only in a macroscopic but also in nanometer range. We first report about experiments to generate optically induced nano structures even down to 100 nm size. The optical stimulation was therefore made by a Scanning Near-field Optical Microscope (SNOM). Secondly, physical conditions inside optically generated surface relief gratings were studied by measuring mechanical properties with high lateral resolution via pulse force mode and force distance curves of an AFM Y1 - 2004 SN - 0204-3467 ER - TY - JOUR A1 - Yang, X. H. A1 - Neher, Dieter T1 - Polymer electrophosphorescence devices with high power conversion efficiencies N2 - We demonstrate efficient single-layer polymer phosphorescent light-emitting devices based on a green-emitting iridium complex and a polymer host co-doped with electron-transporting and hole-transporting molecules. These devices can be operated at relatively low voltages, resulting in a power conversion efficiency of up to 24 lm/W at luminous efficiencies exceeding 30 cd/A. The overall performances of these devices suggest that efficient electrophosphorescent devices with acceptable operating voltages can be achieved in very simple device structures fabricated by spin coating. (C) 2004 American Institute of Physics Y1 - 2004 SN - 0003-6951 ER - TY - JOUR A1 - Yang, X. H. A1 - Neher, Dieter A1 - Hertel, D. A1 - Daubler, T. K. T1 - Highly efficient single-layer polymer electrophosphorescent devices N2 - A commercially available Ir complex has been employed for the preparation of highly efficient (see Figure) single-layer phosphorescent polymer light,emitting diodes by use of appropriate thermal treatment and proper adjustment of the layer composition. These devices exhibit essentially no dependence of the driving field on the concentration of the Ir complex, suggesting that the build-up of space-charge in the layer is insignificant Y1 - 2004 SN - 0935-9648 ER - TY - JOUR A1 - Srikhirin, T. A1 - Cimrova, V. A1 - Schiewe, B. A1 - Tzolov, M. A1 - Hagen, R. A1 - Kostromine, S. A1 - Bieringer, Thomas A1 - Neher, Dieter T1 - An Investigation of the photoinduced changes of absoprtion of high-performance photoaddressable Polymers Y1 - 2002 ER - TY - JOUR A1 - Sianova, D. A1 - Zen, Achmad A1 - Nothofer, Heinz-Georg A1 - Asawapirom, Udom A1 - Scherf, Ullrich A1 - Hagen, R. A1 - Bieringer, Thomas A1 - Kostromine, S. A1 - Neher, Dieter T1 - Photoaddressable alignment layers for fluorescent polymers in polarized electroluminescence devices Y1 - 2002 ER - TY - JOUR A1 - Wilson, J. N. A1 - Steffen, W. A1 - McKenzie, T. G. A1 - Lieser, G. A1 - Oda, Masao A1 - Neher, Dieter A1 - Bunz, Uwe H. F. T1 - Chiroptcial properties of poly(p-phenyleneethynylene) copolymers in thin films : large g-values Y1 - 2002 ER - TY - JOUR A1 - Zen, Achmad A1 - Neher, Dieter A1 - Bauer, C. A1 - Asawapirom, Udom A1 - Scherf, Ullrich A1 - Hagen, R. A1 - Kostromine, S. A1 - Mahrt, R. F. T1 - Polarization-sensitive photoconductivity in aligned polyfluorene layers Y1 - 2002 ER - TY - JOUR A1 - Srikhirin, Toemsak A1 - Laschitsch, Alexander A1 - Neher, Dieter A1 - Johannsmann, Diethelm T1 - Light-induced softening of azobenzene dye-doped polymer films probed with quartz crystal resonators Y1 - 2000 ER - TY - JOUR A1 - Nothofer, Heinz-Georg A1 - Meisel, A. A1 - Miteva, T. A1 - Neher, Dieter A1 - Forster, M. A1 - Oda, Masao A1 - Lieser, G. A1 - Sainova, Dessislava A1 - Yasuda, A. A1 - Lupo, D. A1 - Knoll, W. A1 - Scherf, Ullrich T1 - Liquid crystalline polyfluorenes for blue polarized electroluminescence Y1 - 2000 ER - TY - JOUR A1 - Lieser, G. A1 - Oda, Masao A1 - Miteva, T. A1 - Nothofer, Heinz-Georg A1 - Scherf, Ullrich A1 - Neher, Dieter T1 - Ordering, graphoepitaxial orientation, and conformation of a polyfluorene derivative of the "hairy-rod" type on an oriented substrate of polyimide Y1 - 2000 ER - TY - JOUR A1 - Oda, Masao A1 - Nothofer, Heinz-Georg A1 - Lieser, G. A1 - Scherf, Ullrich A1 - Meskers, S. C. J. A1 - Neher, Dieter T1 - Circularly-polarized electroluminescence from liquid-crystalline chiral polyfluorenes Y1 - 2000 ER - TY - JOUR A1 - Urayama, Kenji A1 - Tsuji, M. A1 - Neher, Dieter T1 - Layer-thinning effects on ferroelectricity and the ferroelectric-to-paraelectric phase transition of vinylidene fluoride-trifluoroethylene copolymer layers Y1 - 2000 ER - TY - JOUR A1 - Bauer, C. A1 - Böhmer, Roland A1 - Moreno-Flores, S. A1 - Richert, R. A1 - Sillescu, H. A1 - Neher, Dieter T1 - Capacitive scanning dilatometry and frequency dependent thermal expansion of polymer films Y1 - 2000 ER - TY - JOUR A1 - Pralle, Martin U. A1 - Urayama, Kenji A1 - Tew, Gregory N. A1 - Neher, Dieter A1 - Wegner, Gerhard A1 - Stupp, Samuel I. T1 - Piezoelectricity in polar supramolecular materials Y1 - 2000 ER - TY - JOUR A1 - Oda, Masao A1 - Meskers, S. C. J. A1 - Nothofer, Heinz-Georg A1 - Scherf, Ullrich A1 - Neher, Dieter T1 - Chiroptical properties of chiral-substituted polyfluorenes Y1 - 2000 ER - TY - JOUR A1 - Pranav, Manasi A1 - Benduhn, Johannes A1 - Nyman, Mathias A1 - Hosseini, Seyed Mehrdad A1 - Kublitski, Jonas A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Leo, Karl A1 - Spoltore, Donato T1 - Enhanced charge selectivity via anodic-C60 layer reduces nonradiative losses in organic solar cells JF - ACS applied materials & interfaces N2 - Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C-60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C-60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design. KW - nonradiative losses KW - molybdenum oxide KW - organic solar cells KW - interfacial layers KW - charge selectivity Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c00049 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 10 SP - 12603 EP - 12609 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Li, Tian-yi A1 - Benduhn, Johannes A1 - Qiao, Zhi A1 - Liu, Yuan A1 - Li, Yue A1 - Shivhare, Rishi A1 - Jaiser, Frank A1 - Wang, Pei A1 - Ma, Jie A1 - Zeika, Olaf A1 - Neher, Dieter A1 - Mannsfeld, Stefan C. B. A1 - Ma, Zaifei A1 - Vandewal, Koen A1 - Leo, Karl T1 - Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells JF - The journal of physical chemistry letters N2 - An understanding of the factors limiting the open-circuit voltage (V-oc) and related photon energy loss mechanisms is critical to increase the power conversion efficiency (PCE) of small-molecule organic solar cells (OSCs), especially those with near-infrared (NIR) absorbers. In this work, two NIR boron dipyrromethene (BODIPY) molecules are characterized for application in planar (PHJ) and bulk (BHJ) heterojunction OSCs. When two H atoms are substituted by F atoms on the peripheral phenyl rings of the molecules, the molecular aggregation type in the thin film changes from the H-type to J-type. For PHJ devices, the nonradiative voltage loss of 0.35 V in the J-aggregated BODIPY is lower than that of 0.49 V in the H-aggregated device. In BHJ devices with a nonradiative voltage loss of 0.35 V, a PCE of 5.5% is achieved with an external quantum efficiency (EQE) maximum of 68% at 700 nm. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpclett.9b01222 SN - 1948-7185 VL - 10 IS - 11 SP - 2684 EP - 2691 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yang, Xiao Hui A1 - Jaiser, Frank A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Galbrecht, Frank A1 - Scherf, Ullrich T1 - Efficient polymer electrophosphoreseent devices with interfacial layers JF - Advanced functional materials N2 - It is shown that several polymers can form insoluble interfacial layers on a poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer after annealing of the double-layer structure. The thickness of the interlayer is dependent on the characteristics of the underlying PEDOT.PSS and the molecular weight of the polymers. It is further shown that the electronic structures of the interlayer polymers have a significant effect on the properties of red-light-emitting polymer-based electrophosphorescent devices. Upon increasing the highest occupied molecular orbital and lowest unoccupied molecular orbital positions, a significant increase in current density and device efficiency is observed. This is attributed to efficient blocking of electrons in combination with direct injection of holes from the interlayer to the phosphorescent dye. Upon proper choice of the interlayer polymer, efficient red, polymer-based electrophosphorescent devices with a peak luminance efficiency of 5.5 cd A(-1) (external quantum efficiency = 6 %) and a maximum power-conversion efficiency of 5 Im W-1 can be realized. Y1 - 2006 U6 - https://doi.org/10.1002/adfm.200500834 SN - 1616-301X SN - 1616-3028 VL - 16 IS - 16 SP - 2156 EP - 2162 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kurpiers, Jona A1 - Ferron, Thomas A1 - Roland, Steffen A1 - Jakoby, Marius A1 - Thiede, Tobias A1 - Jaiser, Frank A1 - Albrecht, Steve A1 - Janietz, Silvia A1 - Collins, Brian A. A1 - Howard, Ian A. A1 - Neher, Dieter T1 - Probing the pathways of free charge generation in organic bulk heterojunction solar cells JF - Nature Communications N2 - The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-04386-3 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Luszczynska, Beata A1 - Dobruchowska, Ewa A1 - Glowacki, Ireneusz A1 - Ulanski, Jacek A1 - Jaiser, Frank A1 - Yang, Xiaohui A1 - Neher, Dieter A1 - Danel, Andrzej T1 - Poly(N-vinylcarbazole) doped with a pyrazoloquinoline dye : a deep blue light-emitting composite for light- emitting diode applications N2 - We investigated the spectral properties of light-emitting diodes based on a deep blue-emitting pyrazoloquinoline dye doped into a poly(N-vinylcarbazole)-based matrix. Even though the electroluminescence (EL) of the host is redshifted and broadened with respect to the emission of the dye, the EL spectrum becomes fully dominated by the dye emission at concentrations of ca. 2 wt %. This is attributed to a competition of exciplex formation on the matrix and exciton formation on the dye. Y1 - 2006 UR - http://jap.aip.org/ U6 - https://doi.org/10.1063/1.2162268 SN - 0021-8979 ER - TY - JOUR A1 - Qu, J. Q. A1 - Zhang, J. Y. A1 - Grimsdale, A. C. A1 - Mullen, K. A1 - Jaiser, Frank A1 - Yang, X. H. A1 - Neher, Dieter T1 - Dendronized perylene diimide emitters : Synthesis, luminescence, and electron and energy transfer studies N2 - Aggregation of chromophores in the solid state commonly causes undesirable red shifts in the emission spectra and/or emission quenching. To overcome this problem, we have prepared soluble perylenetetracarboxidiimide dyes in which the chromophores are effectively shielded by polyphenylene dendrimers attached in the bay positions. Models show that attachment of the shielding units in the bay position should provide more efficient shielding than attaching them via the imide moieties. The dendrimers possess excellent film-forming properties due to alkyl substituents on their peripheries. The lack of a red shift in emission upon going from solution to the solid state indicates the dendrons suppress interaction of the emissive cores, leading to pure red-orange emission. Single-layer LEDs produce red-orange emission with relatively low efficiency especially for the higher generation dendrons, which is attributed to poor charge conduction. LEDs using blends of the dendrimers and the undendronized dye as a model compound in PVK have been investigated, and a model to extract relative charge injection rates through the dendritic scaffold from the spectral contributions in the EL spectra is developed Y1 - 2004 SN - 0024-9297 ER - TY - JOUR A1 - Yang, X. H. A1 - Jaiser, Frank A1 - Klinger, S A1 - Neher, Dieter T1 - Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles N2 - We report that the performances of blue polymer electrophosphorescent devices are crucially depending on the choice of the electron transporting material incorporated into the emissive layer. Devices with 1,3-bis[(4-tert- butylphenyl)-1,3,4-oxidiazolyl]phenylene (OXD-7) doped at similar to 40 wt% into a poly(vinylcarbazole) matrix exhibited significantly higher efficiencies than those with 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), yielding maximum luminous and power efficiency values of 18.2 Cd/A and 8.8 lm/W, respectively. Time resolved photoluminescence measurements revealed a long lifetime phosphorescence component in layers with PBD, which we assign to significant triplet harvesting by this electron-transporting component. (c) 2006 American Institute of Physics Y1 - 2006 UR - http://scitation.aip.org/getpdf/servlet/ GetPDFServlet?filetype=pdf&id=APPLAB000088000002021107000001&idtype=cvips&doi=10.1063/1.2162693&prog=normal U6 - https://doi.org/10.1063/1.2162693 ER - TY - JOUR A1 - Steyrleuthner, Robert A1 - Schubert, Marcel A1 - Jaiser, Frank A1 - Blakesley, James C. A1 - Chen, Zhihua A1 - Facchetti, Antonio A1 - Neher, Dieter T1 - Bulk electron transport and charge injection in a high mobility n-type semiconducting polymer N2 - Bulk electron transport in a high mobility n-type polymer is studied by time-of-flight photocurrent measurements and electron-only devices. Bulk electron mobilities of similar to 5 x 10(-3) cm(2)/Vs are obtained. The analysis of the electron currents suggests the presence of an injection barrier for all conventionally used low workfunction cathodes. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/10008336 U6 - https://doi.org/10.1002/adma.201000232 SN - 0935-9648 ER - TY - JOUR A1 - Sini, Gjergji A1 - Schubert, Marcel A1 - Risko, Chad A1 - Roland, Steffen A1 - Lee, Olivia P. A1 - Chen, Zhihua A1 - Richter, Thomas V. A1 - Dolfen, Daniel A1 - Coropceanu, Veaceslav A1 - Ludwigs, Sabine A1 - Scherf, Ullrich A1 - Facchetti, Antonio A1 - Frechet, Jean M. J. A1 - Neher, Dieter T1 - On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface JF - Advanced energy materials N2 - Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules. KW - donor-acceptor interfaces KW - energy gradients KW - geometrical deformations KW - nonfullerene acceptors KW - organic photovoltaics KW - photocurrent generation KW - polymer solar cells Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201702232 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Fang, Lijia A1 - Holzmueller, Felix A1 - Matulaitis, Tomas A1 - Baasner, Anne A1 - Hauenstein, Christoph A1 - Benduhn, Johannes A1 - Schwarze, Martin A1 - Petrich, Annett A1 - Piersimoni, Fortunato A1 - Scholz, Reinhard A1 - Zeika, Olaf A1 - Koerner, Christian A1 - Neher, Dieter A1 - Vandewal, Koen A1 - Leo, Karl T1 - Fluorine-containing low-energy-gap organic dyes with low voltage losses for organic solar cells JF - Synthetic metals : the journal of electronic polymers and electronic molecular materials N2 - Fluorine-containing donor molecules TFTF, CNTF and PRTF are designed and isomer selectively synthesized for application in vacuum-deposited organic solar cells. These molecules comprise a donor acceptor molecular architecture incorporating thiophene and benzothiadiazole derivatives as the electron-donating and electron-withdrawing moieties, respectively. As opposed to previously reported materials from this class, PRTF can be purified by vacuum sublimation at moderate to high yields because of its higher volatility and better stabilization due to a stronger intramolecular hydrogen bond, as compared to TFTF and CNTF. The UV-vis absorption spectra of the three donors show an intense broadband absorption between 500 nm and 800 nm with, similar positions of their frontier energy levels. The photophysical properties of the three donor molecules are thoroughly tested and optimized in bulk heterojunction solar cells with C-60 as acceptor. PRTF shows the best performance, yielding power conversion efficiencies of up to 3.8%. Moreover, the voltage loss for the PRTF device due to the non radiative recombination of free charge carriers is exceptionally low (0.26 V) as compared to typical values for organic solar cells (>0.34V). (C) 2016 Published by Elsevier B.V. KW - (Z)-isomer KW - Donor materials KW - CH center dot center dot center dot F hydrogen bonds KW - Sublimation with good yield KW - Low voltage losses Y1 - 2016 U6 - https://doi.org/10.1016/j.synthmet.2016.10.025 SN - 0379-6779 VL - 222 SP - 232 EP - 239 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Lu, Guanghao A1 - Di Pietro, Riccardo A1 - Kölln, Lisa Sophie A1 - Nasrallah, Iyad A1 - Zhou, Ling A1 - Mollinger, Sonya A1 - Himmelberger, Scott A1 - Koch, Norbert A1 - Salleo, Alberto A1 - Neher, Dieter T1 - Dual-Characteristic Transistors Based on Semiconducting Polymer Blends JF - Advanced electronic materials N2 - A dual-characteristic polymer field-effect transistor has markedly different characteristics in low and high voltage operations. In the low-voltage range (<5 V) it shows sharp subthreshold slopes (0.3–0.4 V dec−1), using which a low-voltage inverter with gain 8 is realized, while high-voltage (>5 V) induces symmetric current with regard to drain and gate voltages, leading to discrete differential (trans) conductances. KW - charge accumulation KW - crystalline ordering KW - field-effect-transistor KW - semiconducting polymers Y1 - 2016 U6 - https://doi.org/10.1002/aelm.201600267 SN - 2199-160X VL - 2 SP - 2344 EP - 2351 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Ullbrich, Sascha A1 - Benduhn, Johannes A1 - Jia, Xiangkun A1 - Nikolis, Vasileios C. A1 - Tvingstedt, Kristofer A1 - Piersimoni, Fortunato A1 - Roland, Steffen A1 - Liu, Yuan A1 - Wu, Jinhan A1 - Fischer, Axel A1 - Neher, Dieter A1 - Reineke, Sebastian A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses JF - Nature materials N2 - Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic solar cells but can also be exploited for organic light-emitting diodes(1,2). Non-radiative charge-transfer state decay is dominant in state-of-the-art D-A-based organic solar cells and is responsible for large voltage losses and relatively low power-conversion efficiencies as well as electroluminescence external quantum yields in the 0.01-0.0001% range(3,4). In contrast, the electroluminescence external quantum yield reaches up to 16% in D-A-based organic light-emitting diodes(5-7). Here, we show that proper control of charge-transfer state properties allows simultaneous occurrence of a high photovoltaic and emission quantum yield within a single, visible-light-emitting D-A system. This leads to ultralow-emission turn-on voltages as well as significantly reduced voltage losses upon solar illumination. These results unify the description of the electro-optical properties of charge-transfer states in organic optoelectronic devices and foster the use of organic D-A blends in energy conversion applications involving visible and ultraviolet photons(8-11). KW - Electronics, photonics and device physics KW - Optoelectronic devices and components KW - Photonic devices KW - Solar energy and photovoltaic technology Y1 - 2019 U6 - https://doi.org/10.1038/s41563-019-0324-5 SN - 1476-1122 SN - 1476-4660 VL - 18 IS - 5 SP - 459 EP - 464 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lysyakova, Liudmila A1 - Lomadze, Nino A1 - Neher, Dieter A1 - Maximova, Ksenia A1 - Kabashin, Andrei V. A1 - Santer, Svetlana T1 - Light-Tunable Plasmonic Nanoarchitectures Using Gold Nanoparticle-Azobenzene-Containing Cationic Surfactant Complexes JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - When arranged in a proper nanoaggregate architecture, gold nanoparticles can offer controllable plasmon-related absorption/scattering, yielding distinct color effects that depend critically on the relative orientation and distance between nanoparticle constituents. Herein, we report on the implementation of novel plasmonic nanoarchitectures based on complexes between gold nanoparticles and an azobenzene-modified cationic surfactant that can exhibit a light-tunable plasmonic response. The formation of such complexes becomes possible through the use of strongly negatively charged bare gold nanoparticles (similar to 10-nm diameter) prepared by the method of laser ablation in deionized water. Driven by electrostatic interactions, the cationic surfactant molecules attach and form a shell around the negatively charged nanoparticles, resulting in neutralization of the particle charge or even overcompensation beyond which the nanoparticles become positively charged. At low and high surfactant concentrations, Au nanoparticles are negatively and positively charged, respectively, and are represented by single species due to electric repulsion effects having absorption peaks around 523-527 nm, whereas at intermediate concentrations, the Au nanoparticles become neutral, forming nanoscale 100-nm clusterlike aggregates and exhibiting an additional absorption peak at gimel > 600 nm and a visible change in the color of the solution from red to blue. Because of the presence of the photosensitive azobenzene unit in the surfactant tail that undergoes trans-to-cis isomerization under irradiation with UV light, we then demonstrate a light-controlled nanoclustering of nanoparticles, yielding a switch in the plasmonic absorption band and a related change in the solution color. The formed hybrid architectures with a light-controlled plasmonic response could be important for a variety of tasks, including biomedical, surface-enhanced Raman spectroscopy (SERS), data transmission, and storage applications. Y1 - 2015 U6 - https://doi.org/10.1021/jp511232g SN - 1932-7447 VL - 119 IS - 7 SP - 3762 EP - 3770 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Paulke, Andreas A1 - Stranks, Samuel D. A1 - Kniepert, Juliane A1 - Kurpiers, Jona A1 - Wolff, Christian Michael A1 - Schön, Natalie A1 - Snaith, Henry J. A1 - Brenner, Thomas J. K. A1 - Neher, Dieter T1 - Charge carrier recombination dynamics in perovskite and polymer solar cells JF - Applied physics letters N2 - Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH3NH3PbI3) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10(-9) cm(3)/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC71BM yields important differences with regard to the mechanism and time scale of free carrier recombination. (C) 2016 AIP Publishing LLC. Y1 - 2016 U6 - https://doi.org/10.1063/1.4944044 SN - 0003-6951 SN - 1077-3118 VL - 108 SP - 252 EP - 262 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Roland, Steffen A1 - Schubert, Marcel A1 - Collins, Brian A. A1 - Kurpiers, Jona A1 - Chen, Zhihua A1 - Facchetti, Antonio A1 - Ade, Harald W. A1 - Neher, Dieter T1 - Fullerene-free polymer solar cells with highly reduced bimolecular recombination and field-independent charge carrier generation JF - The journal of physical chemistry letters N2 - Photogeneration, recombination, and transport of free charge carriers in all-polymer bulk heterojunction solar cells incorporating poly(3-hexylthiophene) (P3HT) as donor and poly([N,N'-bis(2-octyldodecyl)-naphthelene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)) (P(NDI2OD-T2)) as acceptor polymer have been investigated by the use of time delayed collection field (TDCF) and time-of-flight (TOF) measurements. Depending on the preparation procedure used to dry the active layers, these solar cells comprise high fill factors (FFs) of up to 67%. A strongly reduced bimolecular recombination (BMR), as well as a field-independent free charge carrier generation are observed, features that are common to high performance fullerene-based solar cells. Resonant soft X-ray measurements (R-SoXS) and photoluminescence quenching experiments (PQE) reveal that the BMR is related to domain purity. Our results elucidate the similarities of this polymeric acceptor with the superior recombination properties of fullerene acceptors. Y1 - 2014 U6 - https://doi.org/10.1021/jz501506z SN - 1948-7185 VL - 5 IS - 16 SP - 2815 EP - 2822 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Gehrig, Dominik W. A1 - Roland, Steffen A1 - Howard, Ian A. A1 - Kamm, Valentin A1 - Mangold, Hannah A1 - Neher, Dieter A1 - Laquai, Frederic T1 - Efficiency-limiting processes in low-bandgap polymer:Perylene diimide photovoltaic blends JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - The charge generation and recombination processes following photo-excitation of a low-bandgap polymer:perylene diimide photovoltaic blend are investigated by transient absorption pump-probe spectroscopy covering a dynamic range from femto-to microseconds to get insight into the efficiency-limiting photophysical processes. The several tens of picoseconds, and its efficiency is only half of that in a polymer:fullerene photoinduced electron transfer from the polymer to the perylene acceptor takes up to blend. This reduces the short-circuit current. Time-delayed collection field experiments reveal that the subsequent charge separation is strongly field-dependent, limiting the fill factor and lowering the short-circuit current in polymer:PDI devices. Upon excitation of the acceptor in the low-bandgap polymer blend, the PDI exciton undergoes charge transfer on a time scale of several tens of picoseconds. However, a significant fraction of the charges generated at the interface are quickly lost because of fast geminate recombination. This reduces the short-circuit current even further, leading to a scenario in which only around 2596 of the initial photoexcitations generate free charges that can potentially contribute to the photocurrent. In summary, the key photophysical limitations of perylene diimide as an acceptor in low-bandgap polymer blends appear at the interface between the materials, with the kinetics of both charge generation and separation inhibited as compared to that of fullerenes. Y1 - 2014 U6 - https://doi.org/10.1021/jp503366m SN - 1932-7447 VL - 118 IS - 35 SP - 20077 EP - 20085 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Li, Wentao A1 - Abrecht, Steve A1 - Yang, Liqiang A1 - Roland, Steffen A1 - Tumbleston, John R. A1 - McAfee, Terry A1 - Yan, Liang A1 - Kelly, Mary Allison A1 - Ade, Harald W. A1 - Neher, Dieter A1 - You, Wei T1 - Mobility-controlled performance of thick solar cells based on fluorinated copolymers JF - Journal of the American Chemical Society N2 - Developing novel materials and device architectures to further enhance the efficiency of polymer solar cells requires a fundamental understanding of the impact of chemical structures on photovoltaic properties. Given that device characteristics depend on many parameters, deriving structureproperty relationships has been very challenging. Here we report that a single parameter, hole mobility, determines the fill factor of several hundred nanometer thick bulk heterojunction photovoltaic devices based on a series of copolymers with varying amount of fluorine substitution. We attribute the steady increase of hole mobility with fluorine content to changes in polymer molecular ordering. Importantly, all other parameters, including the efficiency of free charge generation and the coefficient of nongeminate recombination, are nearly identical. Our work emphasizes the need to achieve high mobility in combination with strongly suppressed charge recombination for the thick devices required by mass production technologies. Y1 - 2014 U6 - https://doi.org/10.1021/ja5067724 SN - 0002-7863 VL - 136 IS - 44 SP - 15566 EP - 15576 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Shalom, Menny A1 - Guttentag, Miguel A1 - Fettkenhauer, Christian A1 - Inal, Sahika A1 - Neher, Dieter A1 - Llobet, Antoni A1 - Antonietti, Markus T1 - In situ formation of heterojunctions in modified graphitic carbon nitride: synthesis and noble metal free photocatalysis JF - Chemistry of materials : a publication of the American Chemical Society N2 - Herein, we report the facile synthesis of an efficient roll-like carbon nitride (C3N4) photocatalyst for hydrogen production using a supramolecular complex composed of cyanuric acid, melamine, and barbituric acid as the starting monomers. Optical and photocatalytic investigations show, along with the known red shift of absorption into the visible region, that the insertion of barbituric acid results in the in situ formation of in-plane heterojuctions, which enhance the charge separation process under illumination. Moreover, platinum as the standard cocatalyst in photocatalysis could be successfully replaced with first row transition metal salts and complexes under retention of 50% of the catalytic activity. Their mode of deposition and interaction with the semiconductor was studied in detail. Utilization of the supramolecular approach opens new opportunities to manipulate the charge transfer process within carbon nitride with respect to the design of a more efficient carbon nitride photocatalyst with controlled morphology and optical properties. Y1 - 2014 U6 - https://doi.org/10.1021/cm503258z SN - 0897-4756 SN - 1520-5002 VL - 26 IS - 19 SP - 5812 EP - 5818 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Xu, Jingsan A1 - Brenner, Thomas J. K. A1 - Chabanne, Laurent A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Shalom, Menny T1 - Liquid-Based growth of polymeric carbon nitride layers and their use in a mesostructured polymer solar cell with V-oc exceeding 1 V JF - Journal of the American Chemical Society N2 - Herein we report a general liquid-mediated pathway for the growth of continuous polymeric carbon nitride (C3N4) thin films. The deposition method consists of the use of supramolecular complexes that transform to the liquid state before direct thermal condensation into C3N4 solid films. The resulting films exhibit continuous porous C3N4 networks on various substrates. Moreover, the optical absorption can be easily tuned to cover the solar spectrum by the insertion of an additional molecule into the starting complex. The strength of the deposition method is demonstrated by the use of the C3N4 layer as the electron acceptor in a polymer solar cell that exhibits a remarkable open-circuit voltage exceeding 1 V. The easy, safe, and direct synthesis of carbon nitride in a continuous layered architecture on different functional substrates opens new possibilities for the fabrication of many energy-related devices. Y1 - 2014 U6 - https://doi.org/10.1021/ja508329c SN - 0002-7863 VL - 136 IS - 39 SP - 13486 EP - 13489 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Xu, Jingsan A1 - Brenner, Thomas J. K. A1 - Chen, Zupeng A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Shalom, Menny T1 - Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light JF - ACS applied materials & interfaces N2 - Herein, we report the use of upconversion agents to modify graphite carbon nitride (g-C3N4) by direct thermal condensation of a mixture of ErCl3 center dot 6H(2)O and the supramolecular precursor cyanuric acid-melamine. We show the enhancement of g-C3N4 photoactivity after Er3+ doping by monitoring the photodegradation of Rhodamine B dye under visible light. The contribution of the upconversion agent is demonstrated by measurements using only a red laser. The Er3+ doping alters both the electronic and the chemical properties of g-C3N4. The Er3+ doping reduces emission intensity and lifetime, indicating the formation of new, nonradiative deactivation pathways, probably involving charge-transfer processes. KW - metal-free photocatalysis KW - upconversion KW - carbon nitride KW - RhB photodegradation Y1 - 2014 U6 - https://doi.org/10.1021/am5051263 SN - 1944-8244 VL - 6 IS - 19 SP - 16481 EP - 16486 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Proctor, Christopher M. A1 - Albrecht, Steve A1 - Kuik, Martijn A1 - Neher, Dieter A1 - Thuc-Quyen Nguyen, T1 - Overcoming geminate recombination and enhancing extraction in solution-processed small molecule solar cells JF - dvanced energy materials Y1 - 2014 U6 - https://doi.org/10.1002/aenm.201400230 SN - 1614-6832 SN - 1614-6840 VL - 4 IS - 10 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kraffert, Felix A1 - Steyrleuthner, Robert A1 - Albrecht, Steve A1 - Neher, Dieter A1 - Scharber, Markus C. A1 - Bittl, Robert A1 - Behrends, Jan T1 - Charge Separation in PCPDTBT : PCBM Blends from an EPR Perspective JF - The journal of physical chemistry Y1 - 2014 U6 - https://doi.org/10.1021/jp509650v SN - 1932-7447 VL - 118 IS - 49 SP - 28482 EP - 28493 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Liu, W. A1 - Tkachov, R. A1 - Komber, H. A1 - Senkovskyy, V. A1 - Schubert, M. A1 - Wei, Z. A1 - Facchetti, A. A1 - Neher, Dieter A1 - Kiriy, A. T1 - Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors JF - Polymer Chemistry N2 - Herein, we report the chain-growth tin-free room temperature polymerization method to synthesize n-type perylene diimide-dithiophene-based conjugated polymers (PPDIT2s) suitable for solar cell and transistor applications. The palladium/electron-rich tri-tert-butylphosphine catalyst is effective to enable the chain-growth polymerization of anion-radical monomer Br-TPDIT-Br/Zn to PPDIT2 with a molecular weight up to M-w approximate to 50 kg mol(-1) and moderate polydispersity. This is the second example of the polymerization of unusual anion-radical aromatic complexes formed in a reaction of active Zn and electron-deficient diimide-based aryl halides. As such, the discovered polymerization method is not a specific reactivity feature of the naphthalene-diimide derivatives but is rather a general polymerization tool. This is an important finding, given the significantly higher maximum external quantum efficiency that can be reached with PDI-based copolymers (32-45%) in all-polymer solar cells compared to NDI-based materials (15-30%). Our studies revealed that PPDIT2 synthesized by the new method and the previously published polymer prepared by step-growth Stille polycondensation show similar electron mobility and all-polymer solar cell performance. At the same time, the polymerization reported herein has several technological advantages as it proceeds relatively fast at room temperature and does not involve toxic tin-based compounds. Because several chain-growth polymerization reactions are well-suited for the preparation of well-defined multi-functional polymer architectures, the next target is to explore the utility of the discovered polymerization in the synthesis of end-functionalized polymers and block copolymers. Such materials would be helpful to improve the nanoscale morphology of polymer blends in all-polymer solar cells. Y1 - 2014 U6 - https://doi.org/10.1039/c3py01707a SN - 1759-9954 SN - 1759-9962 VL - 5 IS - 10 SP - 3404 EP - 3411 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kniepert, Juliane A1 - Lange, Ilja A1 - Heidbrink, Jan A1 - Kurpiers, Jona A1 - Brenner, Thomas J. K. A1 - Koster, L. Jan Anton A1 - Neher, Dieter T1 - Effect of Solvent Additive on Generation, Recombination, and Extraction in PTB7:PCBM Solar Cells: A Conclusive Experimental and Numerical Simulation Study JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Time-delayed collection field (TDCF), bias-assisted charge extraction (BACE), and space charge-limited current (SCLC) measurements are combined with complete numerical device simulations to unveil the effect of the solvent additive 1,8-diiodooctane (DIO) on the performance of PTB7:PCBM bulk heterojunction solar cells. DIO is shown to increase the charge generation rate, reduce geminate and bimolecular recombination, and increase the electron mobility. In total, the reduction of loss currents by processing with the additive raises the power conversion efficiency of the PTB7:PCBM blend by a factor of almost three. The lower generation rates and higher geminate recombination losses in devices without DIO are consistent with a blend morphology comprising large fullerene clusters embedded within a PTB7-rich matrix, while the low electron mobility suggests that these fullerene clusters are themselves composed of smaller pure fullerene aggregates separated by disordered areas. Our device simulations show unambiguously that the effect of the additive on the shape of the currentvoltage curve (J-V) cannot be ascribed to the variation of only the mobility, the recombination, or the field dependence of generation. It is only when the changes of all three parameters are taken into account that the simulation matches the experimental J-V characteristics under all illumination conditions and for a wide range of voltages. Y1 - 2015 U6 - https://doi.org/10.1021/jp512721e SN - 1932-7447 VL - 119 IS - 15 SP - 8310 EP - 8320 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Bartesaghi, Davide A1 - Perez, Irene del Carmen A1 - Kniepert, Juliane A1 - Roland, Steffen A1 - Turbiez, Mathieu A1 - Neher, Dieter A1 - Koster, L. Jan Anton T1 - Competition between recombination and extraction of free charges determines the fill factor of organic solar cells JF - Nature Communications N2 - Among the parameters that characterize a solar cell and define its power-conversion efficiency, the fill factor is the least well understood, making targeted improvements difficult. Here we quantify the competition between charge extraction and recombination by using a single parameter theta, and we demonstrate that this parameter is directly related to the fill factor of many different bulk-heterojunction solar cells. Our finding is supported by experimental measurements on 15 different donor: acceptor combinations, as well as by drift-diffusion simulations of organic solar cells in which charge-carrier mobilities, recombination rate, light intensity, energy levels and active-layer thickness are all varied over wide ranges to reproduce typical experimental conditions. The results unify the fill factors of several very different donor: acceptor combinations and give insight into why fill factors change so much with thickness, light intensity and materials properties. To achieve fill factors larger than 0.8 requires further improvements in charge transport while reducing recombination. Y1 - 2015 U6 - https://doi.org/10.1038/ncomms8083 SN - 2041-1723 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Würfel, Uli A1 - Neher, Dieter A1 - Spies, Annika A1 - Albrecht, Steve T1 - Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells JF - Nature Communications N2 - This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current-voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photo-current and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells. Y1 - 2015 U6 - https://doi.org/10.1038/ncomms7951 SN - 2041-1723 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lu, Guanghao A1 - Koch, Norbert A1 - Neher, Dieter T1 - In-situ tuning threshold voltage of field-effect transistors based on blends of poly(3-hexylthiophene) with an insulator electret JF - Applied physics letters N2 - Blending the conjugated polymer poly(3-hexylthiophene) (P3HT) with the insulating electret polystyrene (PS), we show that the threshold voltage V-t of organic field-effect transistors (OFETs) can be easily and reversely tuned by applying a gate bias stress at 130 degrees C. It is proposed that this phenomenon is caused by thermally activated charge injection from P3HT into PS matrix, and that this charge is immobilized within the PS matrix after cooling down to room temperature. Therefore, room-temperature hysteresis-free FETs with desired V-t can be easily achieved. The approach is applied to reversely tune the OFET mode of operation from accumulation to depletion, and to build inverters. (C) 2015 AIP Publishing LLC. Y1 - 2015 U6 - https://doi.org/10.1063/1.4928554 SN - 0003-6951 SN - 1077-3118 VL - 107 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Xu, Jingsan A1 - Shalom, Menny A1 - Piersimoni, Fortunato A1 - Antonietti, Markus A1 - Neher, Dieter A1 - Brenner, Thomas J. K. T1 - Color-Tunable Photoluminescence and NIR Electroluminescence in Carbon Nitride Thin Films and Light-Emitting Diodes JF - Advanced optical materials Y1 - 2015 U6 - https://doi.org/10.1002/adom.201500019 SN - 2195-1071 VL - 3 IS - 7 SP - 913 EP - 917 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - García-Benito, Inés A1 - Quarti, Claudio A1 - Queloz, Valentin I. E. A1 - Hofstetter, Yvonne J. A1 - Becker-Koch, David A1 - Caprioglio, Pietro A1 - Neher, Dieter A1 - Orlandi, Simonetta A1 - Cavazzini, Marco A1 - Pozzi, Gianluca A1 - Even, Jacky A1 - Nazeeruddin, Mohammad Khaja A1 - Vaynzof, Yana A1 - Grancini, Giulia T1 - Fluorination of organic spacer impacts on the structural and optical response of 2D perovskites T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)(2)PbI4 and (Lf)(2)PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1421 KW - fluorinated organic spacer KW - 2D perovskites KW - phase transition KW - temperature dependence KW - excitonic materials Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-512420 SN - 1866-8372 ER - TY - JOUR A1 - Ran, Niva A. A1 - Love, John A. A1 - Heiber, Michael C. A1 - Jiao, Xuechen A1 - Hughes, Michael P. A1 - Karki, Akchheta A1 - Wang, Ming A1 - Brus, Viktor V. A1 - Wang, Hengbin A1 - Neher, Dieter A1 - Ade, Harald A1 - Bazan, Guillermo C. A1 - Thuc-Quyen Nguyen, T1 - Charge generation and recombination in an organic solar cell with low energetic offsets JF - dvanced energy materials N2 - Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short-circuit currents (J(SC)) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open-circuit voltages (V-OC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl-C61-butyric acid methyl ester (PC61BM), that achieves a high V-OC (0.9 V) with very low energy losses (E-loss = 0.52 eV) from the energy of absorbed photons, a respectable J(SC) (13 mA cm(-2)), but a limited FF (54%) is reported. Despite the low energetic offset, the system does not suffer from field-dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge-carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the J(SC), V-OC, and FF can all be improved, even with very low energetic offsets. KW - energetic offset KW - fill factor KW - morphology KW - organic solar cells KW - recombination Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201701073 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hosseini, Seyed Mehrdad A1 - Roland, Steffen A1 - Kurpiers, Jona A1 - Chen, Zhiming A1 - Zhang, Kai A1 - Huang, Fei A1 - Armin, Ardalan A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Impact of Bimolecular Recombination on the Fill Factor of Fullerene and Nonfullerene-Based Solar Cells BT - A Comparative Study of Charge Generation and Extraction JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Power conversion efficiencies of donor/acceptor organic solar cells utilizing nonfullerene acceptors have now increased beyond the record of their fullerene-based counterparts. There remain many fundamental questions regarding nanomorphology, interfacial states, charge generation and extraction, and losses in these systems. Herein, we present a comparative study of bulk heterojunction solar cells composed of a recently introduced naphthothiadiazole-based polymer (NT812) as the electron donor and two different acceptor molecules, namely, [6,6]-phenyl-C71-butyric acid methyl ester (PCBM)[70] and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC). A comparison between the photovoltaic performance of these two types of solar cells reveals that the open-circuit voltage (Voc) of the NT812:ITIC-based solar cell is larger, but the fill factor (FF) is lower than that of the NT812:PCBM[70] device. We find the key reason behind this reduced FF in the ITIC-based device to be faster nongeminate recombination relative to the NT812:PCBM[70] system. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcc.8b11669 SN - 1932-7447 VL - 123 IS - 11 SP - 6823 EP - 6830 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Roland, Steffen A1 - Yan, Liang A1 - Zhang, Qianqian A1 - Jiao, Xuechen A1 - Hunt, Adrian A1 - Ghasemi, Masoud A1 - Ade, Harald A1 - You, Wei A1 - Neher, Dieter T1 - Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a Higher Adduct Fullerene JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Alternative electron acceptors are being actively explored in order to advance the development of bulk-heterojunction (BHJ) organic solar cells (OSCs). The indene-C-60 bisadduct (ICBA) has been regarded as a promising candidate, as it provides high open-circuit voltage in BHJ solar cells; however, the photovoltaic performance of such ICBA-based devices is often inferior when compared to cells with the omnipresent PCBM electron acceptor. Here, by pairing the high performance polymer (FTAZ) as the donor with either PCBM or ICBA as the acceptor, we explore the physical mechanism behind the reduced performance of the ICBA-based device. Time delayed collection field (TDCF) experiments reveal reduced, yet field-independent free charge generation in the FTAZ:ICBA system, explaining the overall lower photocurrent in its cells. Through the analysis of the photoluminescence, photogeneration, and electroluminescence, we find that the lower generation efficiency is neither caused by inefficient exciton splitting, nor do we find evidence for significant energy back-transfer from the CT state to singlet excitons. In fact, the increase in open circuit voltage when replacing PCBM by ICBA is entirely caused by the increase in the CT energy, related to the shift in the LUMO energy, while changes in the radiative and nonradiative recombination losses are nearly absent. On the other hand, space charge limited current (SCLC) and bias-assisted charge extraction (BACE) measurements consistently reveal a severely lower electron mobilitiy in the FTAZ:ICBA blend. Studies of the blends with resonant soft X-ray scattering (R-SoXS), grazing incident wide-angle X-ray scattering (GIWAXS), and scanning transmission X-ray microscopy (STXM) reveal very little differences in the mesoscopic morphology but significantly less nanoscale molecular ordering of the fullerene domains in the ICBA based blends, which we propose as the main cause for the lower generation efficiency and smaller electron mobility. Calculations of the JV curves with an analytical model, using measured values, show good agreement with the experimentally determined JV characteristics, proving that these devices suffer from slow carrier extraction, resulting in significant bimolecular recombination losses. Therefore, this study highlights the importance of high charge carrier mobility for newly synthesized acceptor materials, in addition to having suitable energy levels. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcc.7b02288 SN - 1932-7447 VL - 121 SP - 10305 EP - 10316 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Benduhn, Johannes A1 - Tvingstedt, Kristofer A1 - Piersimoni, Fortunato A1 - Ullbrich, Sascha A1 - Fan, Yeli A1 - Tropiano, Manuel A1 - McGarry, Kathryn A. A1 - Zeika, Olaf A1 - Riede, Moritz K. A1 - Douglas, Christopher J. A1 - Barlow, Stephen A1 - Marder, Seth R. A1 - Neher, Dieter A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Intrinsic non-radiative voltage losses in fullerene-based organic solar cells JF - Nature Energy N2 - Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5% and the optimal optical gap increases to (1.45-1.65) eV, that is, (0.2-0.3) eV higher than for technologies with minimized non-radiative voltage losses. Y1 - 2017 U6 - https://doi.org/10.1038/nenergy.2017.53 SN - 2058-7546 VL - 2 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Hofacker, Andreas A1 - Neher, Dieter T1 - Dispersive and steady-state recombination in organic disordered semiconductors JF - Physical review : B, Condensed matter and materials physics N2 - Charge carrier recombination in organic disordered semiconductors is strongly influenced by the thermalization of charge carriers in the density of states (DOS). Measurements of recombination dynamics, conducted under transient or steady-state conditions, can easily be misinterpreted when a detailed understanding of the interplay of thermalization and recombination is missing. To enable adequate measurement analysis, we solve the multiple-trapping problem for recombining charge carriers and analyze it in the transient and steady excitation paradigm for different DOS distributions. We show that recombination rates measured after pulsed excitation are inherently time dependent since recombination gradually slows down as carriers relax in the DOS. When measuring the recombination order after pulsed excitation, this leads to an apparent high-order recombination at short times. As times goes on, the recombination order approaches an asymptotic value. For the Gaussian and the exponential DOS distributions, this asymptotic value equals the recombination order of the equilibrated system under steady excitation. For a more general DOS distribution, the recombination order can also depend on the carrier density, under both transient and steady-state conditions. We conclude that transient experiments can provide rich information about recombination in and out of equilibrium and the underlying DOS occupation provided that consistent modeling of the system is performed. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.245204 SN - 2469-9950 SN - 2469-9969 VL - 96 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Ligorio, G. A1 - Nardi, M. V. A1 - Steyrleuthner, Robert A1 - Ihiawakrim, D. A1 - Crespo-Monteiro, N. A1 - Brinkmann, Martin A1 - Neher, Dieter A1 - Koch, N. T1 - Metal nanoparticle mediated space charge and its optical control in an organic hole-only device JF - Applied physics letters N2 - We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10(4) due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed. (C) 2016 AIP Publishing LLC. Y1 - 2016 U6 - https://doi.org/10.1063/1.4945710 SN - 0003-6951 SN - 1077-3118 VL - 108 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Zerson, Mario A1 - Neumann, Martin A1 - Steyrleuthner, Robert A1 - Neher, Dieter A1 - Magerle, Robert T1 - Surface Structure of Semicrystalline Naphthalene Diimide-Bithiophene Copolymer Films Studied with Atomic Force Microscopy JF - Macromolecules : a publication of the American Chemical Society Y1 - 2016 U6 - https://doi.org/10.1021/acs.macromol.6b00988 SN - 0024-9297 SN - 1520-5835 VL - 49 SP - 6549 EP - 6557 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Collado-Fregoso, Elisa A1 - Hood, Samantha N. A1 - Shoaee, Safa A1 - Schröder, Bob C. A1 - McCulloch, Iain A1 - Kassal, Ivan A1 - Neher, Dieter A1 - Durrant, James R. T1 - Intercalated vs Nonintercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited JF - The journal of physical chemistry letters N2 - In this Letter, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and nonintercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the nonintercalated system and almost vanishes when energetic disorder is included in the model. Despite these differences, both femtosecond-resolved transient absorption spectroscopy (TAS) and time-delayed collection field (TDCF) exhibit extensive first-order losses in both systems, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene-aggregated domains (1:4 PBTTT:PC70BM) is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short-circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges and their impact upon charge generation and recombination. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpclett.7b01571 SN - 1948-7185 VL - 8 SP - 4061 EP - 4068 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Nikolis, Vasileios C. A1 - Benduhn, Johannes A1 - Holzmueller, Felix A1 - Piersimoni, Fortunato A1 - Lau, Matthias A1 - Zeika, Olaf A1 - Neher, Dieter A1 - Koerner, Christian A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Reducing Voltage Losses in Cascade Organic Solar Cells while Maintaining High External Quantum Efficiencies JF - dvanced energy materials N2 - High photon energy losses limit the open-circuit voltage (V-OC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimization route is presented which increases the V-OC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha-sexithiophene (alpha-6T) (D) and chloroboron subnaphthalocyanine (SubNc) (A) increases the V-OC of an alpha-6T/SubNc/SubPc fullerene-free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D-A interface. By accurately measuring the optical gap (E-opt) and the energy of the charge-transfer state (E-CT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. E-opt - qV(OC) losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the V-OC-optimized devices, the low-energy (700 nm) external quantum efficiency (EQE) peak remains high at 79%, despite a minimal driving force for charge separation of less than 10 meV. This work shows that low-voltage losses can be combined with a high EQE in organic photovoltaic devices. KW - energy losses KW - nonradiative recombination KW - open-circuit voltage KW - organic solar cells KW - voltage losses Y1 - 2017 U6 - https://doi.org/10.1002/aenm.201700855 SN - 1614-6832 SN - 1614-6840 VL - 7 SP - 122 EP - 136 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hofacker, Andreas A1 - Neher, Dieter T1 - Dispersive and steady-state recombination in organic disordered semiconductors JF - Physical review : B, Condensed matter and materials physics N2 - Charge carrier recombination in organic disordered semiconductors is strongly influenced by the thermalization of charge carriers in the density of states (DOS). Measurements of recombination dynamics, conducted under transient or steady-state conditions, can easily be misinterpreted when a detailed understanding of the interplay of thermalization and recombination is missing. To enable adequate measurement analysis, we solve the multiple-trapping problem for recombining charge carriers and analyze it in the transient and steady excitation paradigm for different DOS distributions. We show that recombination rates measured after pulsed excitation are inherently time dependent since recombination gradually slows down as carriers relax in the DOS. When measuring the recombination order after pulsed excitation, this leads to an apparent high-order recombination at short times. As times goes on, the recombination order approaches an asymptotic value. For the Gaussian and the exponential DOS distributions, this asymptotic value equals the recombination order of the equilibrated system under steady excitation. For a more general DOS distribution, the recombination order can also depend on the carrier density, under both transient and steady-state conditions. We conclude that transient experiments can provide rich information about recombination in and out of equilibrium and the underlying DOS occupation provided that consistent modeling of the system is performed. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.245204 SN - 2469-9950 SN - 2469-9969 VL - 96 SP - 5640 EP - 5649 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Mechau, Norman A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Molecular tracer diffusion in thin azobenzene polymer layers JF - Applied physics letters N2 - Translational diffusion of fluorescent tracer molecules in azobenzene polymer layers is studied at different temperatures and under illumination using the method of fluorescence recovery after photobleaching. Diffusion is clearly observed in the dark above the glass transition temperature, while homogeneous illumination at 488 nm and 100 mW/cm(2) does not cause any detectable diffusion of the dye molecules within azobenzene layers. This implies that the viscosity of azobenzene layers remains nearly unchanged under illumination with visible light in the absence of internal or external forces. (c) 2006 American Institute of Physics. Y1 - 2006 U6 - https://doi.org/10.1063/1.2405853 SN - 0003-6951 VL - 89 IS - 25 PB - Elsevier CY - Melville ER - TY - JOUR A1 - Alqahtani, Obaid A1 - Babics, Maxime A1 - Gorenflot, Julien A1 - Savikhin, Victoria A1 - Ferron, Thomas A1 - Balawi, Ahmed H. A1 - Paulke, Andreas A1 - Kan, Zhipeng A1 - Pope, Michael A1 - Clulow, Andrew J. A1 - Wolf, Jannic A1 - Burn, Paul L. A1 - Gentle, Ian R. A1 - Neher, Dieter A1 - Toney, Michael F. A1 - Laquai, Frederic A1 - Beaujuge, Pierre M. A1 - Collins, Brian A. T1 - Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors JF - Advanced energy materials N2 - The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh2)(2), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes. KW - charge transport KW - domain purity KW - microscopy KW - mixed domains KW - organic solar cells KW - photovoltaic devices KW - resonant X-ray scattering KW - small molecules KW - transient spectroscopy Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201702941 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 19 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Li, Tian-yi A1 - Benduhn, Johannes A1 - Li, Yue A1 - Jaiser, Frank A1 - Spoltore, Donato A1 - Zeika, Olaf A1 - Ma, Zaifei A1 - Neher, Dieter A1 - Vandewal, Koen A1 - Leo, Karl T1 - Boron dipyrromethene (BODIPY) with meso-perfluorinated alkyl substituents as near infrared donors in organic solar cells JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Three furan-fused BODIPYs were synthesized with perfluorinated methyl, ethyl and n-propyl groups on the meso-carbon. They were obtained with high yields by reacting the furan-fused 2-carboxylpyrrole in corresponding perfluorinated acid and anhydride. With the increase in perfluorinated alkyl chain length, the molecular packing in the single crystal is influenced, showing increasing stacking distance and decreasing slope angle. All the BODIPYs were characterized as intense absorbers in near infrared region in solid state, peaking at similar to 800 nm with absorption coefficient of over 280 000 cm(-1). Facilitated by high thermal stability, the furan-fused BODIPYs were employed in vacuum-deposited organic solar cells as electron donors. All devices exhibit PCE over 6.0% with the EQE maximum reaching 70% at similar to 790 nm. The chemical modification of the BODIPY donors have certain influence on the active layer morphology, and the highest PCE of 6.4% was obtained with a notably high jsc of 13.6 mA cm(-2). Sensitive EQE and electroluminance studies indicated that the energy losses generated by the formation of a charge transfer state and the radiative recombination at the donor-acceptor interface were comparable in the range of 0.14-0.19 V, while non-radiative recombination energy loss of 0.38 V was the main energy loss route resulting in the moderate V-oc of 0.76 V. Y1 - 2018 U6 - https://doi.org/10.1039/c8ta06261g SN - 2050-7488 SN - 2050-7496 VL - 6 IS - 38 SP - 18583 EP - 18591 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Salert, Beatrice Ch. D. A1 - Krueger, Hartmut A1 - Bagnich, Sergey A. A1 - Unger, Thomas A1 - Jaiser, Frank A1 - Al-Sa'di, Mahmoud A1 - Neher, Dieter A1 - Hayer, Anna A1 - Eberle, Thomas T1 - New polymer matrix system for phosphorescent organic light-emitting diodes and the role of the small molecular co-host JF - Journal of polymer science : A, Polymer chemistry N2 - A new matrix system for phosphorescent organic light-emitting diodes (OLEDs) based on an electron transporting component attached to an inert polymer backbone, an electronically neutral co-host, and a phosphorescent dye that serves as both emitter and hole conductor are presented. The inert co-host is used either as small molecules or covalently connected to the same chain as the electron-transporting host. The use of a small molecular inert co-host in the active layer is shown to be highly advantageous in comparison to a purely polymeric matrix bearing the same functionalities. Analysis of the dye phosphorescence decay in pure polymer, small molecular co-host film, and their blend lets to conclude that dye molecules distribute mostly in the small molecular co-host phase, where the co-host prevents agglomeration and self-quenching of the phosphorescence as well as energy transfer to the electron transporting units. In addition, the co-host accumulates at the anode interface where it acts as electron blocking layer and improves hole injection. This favorable phase separation between polymeric and small molecular components results in devices with efficiencies of about 47 cd/A at a luminance of 1000 cd/m(2). Investigation of OLED degradation demonstrates the presence of two time regimes: one fast component that leads to a strong decrease at short times followed by a slower decrease at longer times. Unlike the long time degradation, the efficiency loss that occurs at short times is reversible and can be recovered by annealing of the device at 180 degrees C. We also show that the long-time degradation must be related to a change of the optical and electrical bulk properties. KW - charge transport KW - conducting polymer KW - degradation KW - host-guest systems KW - light-emitting diodes KW - random copolymer KW - synthesis KW - UV-vis spectroscopy Y1 - 2013 U6 - https://doi.org/10.1002/pola.26409 SN - 0887-624X VL - 51 IS - 3 SP - 601 EP - 613 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Zen, Achmad A1 - Pflaum, J. A1 - Hirschmann, S. A1 - Zhuang, W. A1 - Jaiser, Frank A1 - Asawapirom, Udom A1 - Rabe, J. P. A1 - Scherf, Ullrich A1 - Neher, Dieter T1 - Effect of molecular weight and annealing of poly (3-hexylthiophene)s on the performance of organic field-effect transistors N2 - The optical, structural, and electrical properties of thin layers made from poly(3-hexylthiophene) (P3HT) samples of different molecular weights are presented. As reported in a previous paper by Kline et al., Adv. Mater 2003, 15, 1519, the mobilities of these layers are a strong function of the molecular weight, with the largest mobility found for the largest molecular weight. Atomic force microscopy studies reveal a complex polycrystalline morphology which changes considerably upon annealing. X-ray studies show the occurrence of a layered phase for all P3HT fractions, especially after annealing at 1.50 degreesC . However, there is no clear correlation between the differences in the transport properties and the data from structural investigations. In order to reveal the processes limiting the mobility in these layers, the transistor properties were investigated as a function of temperature. The mobility decreases continuously with increasing temperatures; with the same trend pronounced thermochromic effects of the P3HT films occur. Apparently, the polymer chains adopt a more twisted, disordered conformation at higher temperatures, leading to interchain transport barriers. We conclude that the backbone conformation of the majority of the bulk material rather than the crystallinity of the layer is the most crucial parameter controlling the charge transport in these P3HT layers. This interpretation is supported by the significant blue-shift of the solid-state absorption spectra with decreasing molecular weight, which is indicative of a larger distortion of the P3HT backbone in the low-molecular weight P3HT layers Y1 - 2004 ER - TY - JOUR A1 - Bagnich, Sergey A. A1 - Unger, Th. A1 - Jaiser, Frank A1 - Neher, Dieter A1 - Thesen, M. W. A1 - Krüger, H. T1 - Efficient green electrophosphorescence based on ambipolar nonconjugated polymers evaluation of transport and emission properties JF - Journal of applied physics N2 - New materials for polymer organic light-emitting diodes based on a polymer matrix doped with phosphorescent dyes are presented. The matrix system is based on a polystyrene backbone bearing either electron or hole transporting units at the 4-position of each repeat unit. Random copolymers and polymer blend systems of the homopolymers are prepared, both with 62 wt.% electron transporting and 38 wt.% hole transporting moieties. Adding a green electrophosphorescent dye to the polymer matrix leads to efficient electroluminescence with a maximum current efficiency of 35 cd/A and a maximum external quantum efficiency of up to 10%. The mobilities of electrons and holes in the dye-doped copolymer, as measured by transient electroluminescence, are around 5 x 10(-5) and 5 x 10(-6) cm(2)/Vs, respectively, while the blend of the two homopolymers exhibits slightly lower mobilities of both types of carriers. Despite the pronounced imbalance of charge transport, the device performance is almost entirely limited by the phosphorescence efficiency of the dye, implying balanced flow of holes and electrons into the active region. Also, devices made with either the copolymer or the blend yielded very similar device efficiencies, despite the noticeable difference in electron and hole mobility. It is proposed that electrons are efficiently blocked at the interlayer and that the so-formed space charge assists the balanced injection of holes. Y1 - 2011 U6 - https://doi.org/10.1063/1.3618681 SN - 0021-8979 SN - 1089-7550 VL - 110 IS - 3 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Yang, Xiao Hui A1 - Jaiser, Frank A1 - Neher, Dieter A1 - Lawson, PaDreyia V. A1 - Brédas, Jean-Luc A1 - Zojer, Egbert A1 - Güntner, Roland A1 - Scanduicci de Freitas, Patricia A1 - Forster, Michael A1 - Scherf, Ullrich T1 - Suppression of the keto-emission in polyfluorene light-emitting diodes : Experiments and models N2 - The spectral characteristics of polyfluorene (PF)-based light-emitting diodes (LEDs) containing a defined low concentration of either keto-defects or of the polymer poly(9.9-octylfuorene-co-benzothiadiazole) (F8BT) are preseneted. Both types of blend layers were tested in different device configurations with respect to the relative and absolute intensities of green blue emission components. It is shown that blending hole-transporting molecules into the emission layer at low concentration or incorporation of a suitable hole-transport layer reduces the green emission contribution in the electroluminescence (EL) spectrum of the PF:F8BT blend, which is similar to what is observed for the keto- containing PF layer. We conclude that the keto-defects in PF homopolymer layers mainly constitute weakly emissive electron traps, in agreement with the results of quantum-mechanical calculations Y1 - 2004 SN - 1616-301X ER - TY - JOUR A1 - Al-Sa'di, Mahmoud A1 - Jaiser, Frank A1 - Bagnich, Sergey A. A1 - Unger, Thomas A1 - Blakesley, James C. A1 - Wilke, Andreas A1 - Neher, Dieter T1 - Electrical and optical simulations of a polymer-based phosphorescent organic light-emitting diode with high efficiency JF - Journal of polymer science : B, Polymer physics N2 - A comprehensive numerical device simulation of the electrical and optical characteristics accompanied with experimental measurements of a new highly efficient system for polymer-based light-emitting diodes doped with phosphorescent dyes is presented. The system under investigation comprises an electron transporter attached to a polymer backbone blended with an electronically inert small molecule and an iridium-based green phosphorescent dye which serves as both emitter and hole transporter. The device simulation combines an electrical and an optical model. Based on the known highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of all components as well as the measured electrical and optical characteristics of the devices, we model the emissive layer as an effective medium using the dye's HOMO as hole transport level and the polymer LUMO as electron transport level. By fine-tuning the injection barriers at the electron and hole-injecting contact, respectively, in simulated devices, unipolar device characteristics were fitted to the experimental data. Simulations using the so-obtained set of parameters yielded very good agreement to the measured currentvoltage, luminancevoltage characteristics, and the emission profile of entire bipolar light-emitting diodes, without additional fitting parameters. The simulation was used to gain insight into the physical processes and the mechanisms governing the efficiency of the organic light-emitting diode, including the position and extent of the recombination zone, carrier concentration profiles, and field distribution inside the device. The simulations show that the device is severely limited by hole injection, and that a reduction of the hole-injection barrier would improve the device efficiency by almost 50%. KW - conjugated polymers KW - high performance polymers KW - organic electronics KW - organic light-emitting diode KW - simulations KW - TCAD Y1 - 2012 U6 - https://doi.org/10.1002/polb.23158 SN - 0887-6266 VL - 50 IS - 22 SP - 1567 EP - 1576 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Pranav, Manasi A1 - Hultzsch, Thomas A1 - Musiienko, Artem A1 - Sun, Bowen A1 - Shukla, Atul A1 - Jaiser, Frank A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Anticorrelated photoluminescence and free charge generation proves field-assisted exciton dissociation in low-offset PM6:Y5 organic solar cells JF - APL materials : high impact open access journal in functional materials science N2 - Understanding the origin of inefficient photocurrent generation in organic solar cells with low energy offset remains key to realizing high-performance donor-acceptor systems. Here, we probe the origin of field-dependent free-charge generation and photoluminescence in wnon-fullereneacceptor (NFA)-based organic solar cells using the polymer PM6 and the NFA Y5-a non-halogenated sibling to Y6, with a smaller energetic offset to PM6. By performing time-delayed collection field (TDCF) measurements on a variety of samples with different electron transport layers and active layer thickness, we show that the fill factor and photocurrent are limited by field-dependent free charge generation in the bulk of the blend. We also introduce a new method of TDCF called m-TDCF to prove the absence of artifacts from non-geminate recombination of photogenerated and dark charge carriers near the electrodes. We then correlate free charge generation with steady-state photoluminescence intensity and find perfect anticorrelation between these two properties. Through this, we conclude that photocurrent generation in this low-offset system is entirely controlled by the field-dependent dissociation of local excitons into charge-transfer states. (c) 2023 Author(s). Y1 - 2023 U6 - https://doi.org/10.1063/5.0151580 SN - 2166-532X VL - 11 IS - 6 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Tokmoldin, Nurlan A1 - Vollbrecht, Joachim A1 - Hosseini, Seyed Mehrdad A1 - Sun, Bowen A1 - Perdigón-Toro, Lorena A1 - Woo, Han Young A1 - Zou, Yingping A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Explaining the fill-factor and photocurrent losses of nonfullerene acceptor-based solar cells by probing the long-range charge carrier diffusion and drift lengths JF - Advanced energy materials N2 - Organic solar cells (OSC) nowadays match their inorganic competitors in terms of current production but lag behind with regards to their open-circuit voltage loss and fill-factor, with state-of-the-art OSCs rarely displaying fill-factor of 80% and above. The fill-factor of transport-limited solar cells, including organic photovoltaic devices, is affected by material and device-specific parameters, whose combination is represented in terms of the established figures of merit, such as theta and alpha. Herein, it is demonstrated that these figures of merit are closely related to the long-range carrier drift and diffusion lengths. Further, a simple approach is presented to devise these characteristic lengths using steady-state photoconductance measurements. This yields a straightforward way of determining theta and alpha in complete cells and under operating conditions. This approach is applied to a variety of photovoltaic devices-including the high efficiency nonfullerene acceptor blends-and show that the diffusion length of the free carriers provides a good correlation with the fill-factor. It is, finally, concluded that most state-of-the-art organic solar cells exhibit a sufficiently large drift length to guarantee efficient charge extraction at short circuit, but that they still suffer from too small diffusion lengths of photogenerated carriers limiting their fill factor. KW - diffusion length KW - drift length KW - figure of merit KW - lifetime‐ mobility product KW - steady‐ state photoconductance Y1 - 2021 U6 - https://doi.org/10.1002/aenm.202100804 SN - 1614-6840 VL - 11 IS - 22 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kroh, Daniel A1 - Eller, Fabian A1 - Schötz, Konstantin A1 - Wedler, Stefan A1 - Perdigón-Toro, Lorena A1 - Freychet, Guillaume A1 - Wei, Qingya A1 - Dörr, Maximilian A1 - Jones, David A1 - Zou, Yingping A1 - Herzig, Eva M. A1 - Neher, Dieter A1 - Köhler, Anna T1 - Identifying the signatures of intermolecular interactions in blends of PM6 with Y6 and N4 using absorption spectroscopy JF - Advanced functional materials N2 - In organic solar cells, the resulting device efficiency depends strongly on the local morphology and intermolecular interactions of the blend film. Optical spectroscopy was used to identify the spectral signatures of interacting chromophores in blend films of the donor polymer PM6 with two state-of-the-art nonfullerene acceptors, Y6 and N4, which differ merely in the branching point of the side chain. From temperature-dependent absorption and luminescence spectroscopy in solution, it is inferred that both acceptor materials form two types of aggregates that differ in their interaction energy. Y6 forms an aggregate with a predominant J-type character in solution, while for N4 molecules the interaction is predominantly in a H-like manner in solution and freshly spin-cast film, yet the molecules reorient with respect to each other with time or thermal annealing to adopt a more J-type interaction. The different aggregation behavior of the acceptor materials is also reflected in the blend films and accounts for the different solar cell efficiencies reported with the two blends. KW - charge-transfer states KW - Frank-Condon analysis KW - morphology KW - organic solar cells Y1 - 2022 U6 - https://doi.org/10.1002/adfm.202205711 SN - 1616-301X SN - 1616-3028 VL - 32 IS - 44 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kniepert, Juliane A1 - Paulke, Andreas A1 - Perdigón-Toro, Lorena A1 - Kurpiers, Jona A1 - Zhang, Huotian A1 - Gao, Feng A1 - Yuan, Jun A1 - Zou, Yingping A1 - Le Corre, Vincent M. A1 - Koster, Lambert Jan Anton A1 - Neher, Dieter T1 - Reliability of charge carrier recombination data determined with charge extraction methods JF - Journal of applied physics N2 - Charge extraction methods are popular for measuring the charge carrier density in thin film organic solar cells and to draw conclusions about the order and coefficient of nongeminate charge recombination. However, results from such studies may be falsified by inhomogeneous steady state carrier profiles or surface recombination. Here, we present a detailed drift-diffusion study of two charge extraction methods, bias-assisted charge extraction (BACE) and time-delayed collection field (TDCF). Simulations are performed over a wide range of the relevant parameters. Our simulations reveal that both charge extraction methods provide reliable information about the recombination order and coefficient if the measurements are performed under appropriate conditions. However, results from BACE measurements may be easily affected by surface recombination, in particular for small active layer thicknesses and low illumination densities. TDCF, on the other hand, is more robust against surface recombination due to its transient nature but also because it allows for a homogeneous high carrier density to be inserted into the active layer. Therefore, TDCF is capable to provide meaningful information on the order and coefficient of recombination even if the model conditions are not exactly fulfilled. We demonstrate this for an only 100 nm thick layer of a highly efficient nonfullerene acceptor (NFA) blend, comprising the donor polymer PM6 and the NFA Y6. TDCF measurements were performed as a function of delay time for different laser fluences and bias conditions. The full set of data could be consistently fitted by a strict second order recombination process, with a bias- and fluence-independent bimolecular recombination coefficient k(2) = 1.7 x 10(-17)m(3) s(-1). BACE measurements performed on the very same layer yielded the identical result, despite the very different excitation conditions. This proves that recombination in this blend is mostly through processes in the bulk and that surface recombination is of minor importance despite the small active layer thickness. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5129037 SN - 0021-8979 SN - 1089-7550 VL - 126 IS - 20 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Wolff, Christian Michael A1 - Zu, Fengshuo A1 - Paulke, Andreas A1 - Perdigón-Toro, Lorena A1 - Koch, Norbert A1 - Neher, Dieter T1 - Reduced Interface-Mediated Recombination for High Open-Circuit Voltages in CH3NH3PbI3 Solar Cells JF - Advanced materials N2 - Perovskite solar cells with all-organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high-temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron-transporting layer of inverted perovskite cells affects the open-circuit voltage (V-OC). It is shown that nonradiative recombination mediated by the electron-transporting layer is the limiting factor for the V-OC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a V-OC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge-blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high V-OC and efficiency. KW - electron-transport layers KW - nonradiative recombination KW - open-circuit voltage KW - perovskite solar cells Y1 - 2017 U6 - https://doi.org/10.1002/adma.201700159 SN - 0935-9648 SN - 1521-4095 VL - 29 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Martin A1 - Schellhammer, Karl Sebastian A1 - Ortstein, Katrin A1 - Benduhn, Johannes A1 - Gaul, Christopher A1 - Hinderhofer, Alexander A1 - Perdigón-Toro, Lorena A1 - Scholz, Reinhard A1 - Kublitski, Jonas A1 - Roland, Steffen A1 - Lau, Matthias A1 - Poelking, Carl A1 - Andrienko, Denis A1 - Cuniberti, Gianaurelio A1 - Schreiber, Frank A1 - Neher, Dieter A1 - Vandewal, Koen A1 - Ortmann, Frank A1 - Leo, Karl T1 - Impact of molecular quadrupole moments on the energy levels at organic heterojunctions JF - Nature Communications N2 - The functionality of organic semiconductor devices crucially depends on molecular energies, namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity values of thin films are, however, sensitive to film morphology and composition, making their prediction challenging. In a combined experimental and simulation study on zinc-phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a function of molecular orientation in neat films or mixing ratio in blends are proportional to the molecular quadrupole component along the p-p-stacking direction. We apply these findings to organic solar cells and demonstrate how the electrostatic interactions can be tuned to optimise the energy of the charge-transfer state at the donor-acceptor interface and the dissociation barrier for free charge carrier generation. The confirmation of the correlation between interfacial energies and quadrupole moments for other materials indicates its relevance for small molecules and polymers. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-10435-2 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Collado-Fregoso, Elisa A1 - Pugliese, Silvina N. A1 - Wojcik, Mariusz A1 - Benduhn, Johannes A1 - Bar-Or, Eyal A1 - Perdigón-Toro, Lorena A1 - Hörmann, Ulrich A1 - Spoltore, Donato A1 - Vandewal, Koen A1 - Hodgkiss, Justin M. A1 - Neher, Dieter T1 - Energy-gap law for photocurrent generation in fullerene-based organic solar cells BT - the case of low-donor-content blends JF - Journal of the American Chemical Society N2 - The involvement of charge-transfer (CT) states in the photogeneration and recombination of charge carriers has been an important focus of study within the organic photovoltaic community. In this work, we investigate the molecular factors determining the mechanism of photocurrent generation in low-donor-content organic solar cells, where the active layer is composed of vacuum-deposited C-60 and small amounts of organic donor molecules. We find a pronounced decline of all photovoltaic parameters with decreasing CT state energy. Using a combination of steady-state photocurrent measurements and time-delayed collection field experiments, we demonstrate that the power conversion efficiency, and more specifically, the fill factor of these devices, is mainly determined by the bias dependence of photocurrent generation. By combining these findings with the results from ultrafast transient absorption spectroscopy, we show that blends with small CT energies perform poorly because of an increased nonradiative CT state decay rate and that this decay obeys an energy-gap law. Our work challenges the common view that a large energy offset at the heterojunction and/or the presence of fullerene clusters guarantee efficient CT dissociation and rather indicates that charge generation benefits from high CT state energies through a slower decay to the ground state. Y1 - 2019 U6 - https://doi.org/10.1021/jacs.8b09820 SN - 0002-7863 VL - 141 IS - 6 SP - 2329 EP - 2341 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Nordmann, Joleik A1 - Zhang, Shanshan A1 - Rothhardt, Daniel A1 - Hörmann, Ulrich A1 - Amir, Yohai A1 - Redinger, Alex A1 - Kegelmann, Lukas A1 - Zu, Fengshuo A1 - Albrecht, Steve A1 - Koch, Norbert A1 - Kirchartz, Thomas A1 - Saliba, Michael A1 - Unold, Thomas A1 - Neher, Dieter T1 - The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells JF - Energy & environmental science N2 - Charge transport layers (CTLs) are key components of diffusion controlled perovskite solar cells, however, they can induce additional non-radiative recombination pathways which limit the open circuit voltage (V-OC) of the cell. In order to realize the full thermodynamic potential of the perovskite absorber, both the electron and hole transport layer (ETL/HTL) need to be as selective as possible. By measuring the photoluminescence yield of perovskite/CTL heterojunctions, we quantify the non-radiative interfacial recombination currents in pin- and nip-type cells including high efficiency devices (21.4%). Our study comprises a wide range of commonly used CTLs, including various hole-transporting polymers, spiro-OMeTAD, metal oxides and fullerenes. We find that all studied CTLs limit the V-OC by inducing an additional non-radiative recombination current that is in most cases substantially larger than the loss in the neat perovskite and that the least-selective interface sets the upper limit for the V-OC of the device. Importantly, the V-OC equals the internal quasi-Fermi level splitting (QFLS) in the absorber layer only in high efficiency cells, while in poor performing devices, the V-OC is substantially lower than the QFLS. Using ultraviolet photoelectron spectroscopy and differential charging capacitance experiments we show that this is due to an energy level mis-alignment at the p-interface. The findings are corroborated by rigorous device simulations which outline important considerations to maximize the V-OC. This work highlights that the challenge to suppress non-radiative recombination losses in perovskite cells on their way to the radiative limit lies in proper energy level alignment and in suppression of defect recombination at the interfaces. Y1 - 2019 U6 - https://doi.org/10.1039/c9ee02020a SN - 1754-5692 SN - 1754-5706 VL - 12 IS - 9 SP - 2778 EP - 2788 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zhang, Shanshan A1 - Hosseini, Seyed Mehrdad A1 - Gunder, Rene A1 - Petsiuk, Andrei A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Shoaee, Safa A1 - Meredith, Paul A1 - Schorr, Susan A1 - Unold, Thomas A1 - Burn, Paul L. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells JF - Advanced materials N2 - 2D Ruddlesden-Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH3(CH2)(3)NH3)(2)(CH3NH3)(n-1)PbnI3n+1 perovskite cells with different numbers of [PbI6](4-) sheets (n = 2-4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V-OC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C-60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V-OC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements. KW - 2D perovskites KW - interface recombination KW - perovskite solar cells KW - photoluminescence KW - V-OC loss Y1 - 2019 U6 - https://doi.org/10.1002/adma.201901090 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 30 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Caprioglio, Pietro A1 - Zu, Fengshuo A1 - Wolff, Christian Michael A1 - Prieto, Jose A. Marquez A1 - Stolterfoht, Martin A1 - Becker, Pascal A1 - Koch, Norbert A1 - Unold, Thomas A1 - Rech, Bernd A1 - Albrecht, Steve A1 - Neher, Dieter T1 - High open circuit voltages in pin-type perovskite solar cells through strontium addition JF - Sustainable Energy & Fuels N2 - The incorporation of even small amounts of strontium (Sr) into lead-base hybrid quadruple cation perovskite solar cells results in a systematic increase of the open circuit voltage (V-oc) in pin-type perovskite solar cells. We demonstrate via absolute and transient photoluminescence (PL) experiments how the incorporation of Sr significantly reduces the non-radiative recombination losses in the neat perovskite layer. We show that Sr segregates at the perovskite surface, where it induces important changes of morphology and energetics. Notably, the Sr-enriched surface exhibits a wider band gap and a more n-type character, accompanied with significantly stronger surface band bending. As a result, we observe a significant increase of the quasi-Fermi level splitting in the neat perovskite by reduced surface recombination and more importantly, a strong reduction of losses attributed to non-radiative recombination at the interface to the C-60 electron-transporting layer. The resulting solar cells exhibited a V-oc of 1.18 V, which could be further improved to nearly 1.23 V through addition of a thin polymer interlayer, reducing the non-radiative voltage loss to only 110 meV. Our work shows that simply adding a small amount of Sr to the precursor solutions induces a beneficial surface modification in the perovskite, without requiring any post treatment, resulting in high efficiency solar cells with power conversion efficiency (PCE) up to 20.3%. Our results demonstrate very high V-oc values and efficiencies in Sr-containing quadruple cation perovskite pin-type solar cells and highlight the imperative importance of addressing and minimizing the recombination losses at the interface between perovskite and charge transporting layer. Y1 - 2019 U6 - https://doi.org/10.1039/c8se00509e SN - 2398-4902 VL - 3 IS - 2 SP - 550 EP - 563 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Caprioglio, Pietro A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Unold, Thomas A1 - Rech, Bernd A1 - Albrecht, Steve A1 - Neher, Dieter T1 - On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells JF - advanced energy materials N2 - Today's perovskite solar cells (PSCs) are limited mainly by their open‐circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity‐dependent measurements of the quasi‐Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin‐type PSCs with efficiencies above 20%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley‐Queisser theory. This has far‐reaching implications for the applicability of some well‐established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift‐diffusion simulations, the intensity dependence of the QFLS, the QFLS‐VOC offset and the ideality factor are consistently explained by trap‐assisted recombination and energetic misalignment at the interfaces. Additionally, it is found that the saturation of the VOC at high intensities is caused by insufficient contact selectivity while heating effects are of minor importance. It is concluded that the analysis of the VOC does not provide reliable conclusions of the recombination pathways and that the knowledge of the QFLS‐VOC relation is of great importance. KW - electro-optical materials KW - perovskite solar cells KW - photovoltaic devices KW - thin films Y1 - 2019 U6 - https://doi.org/10.1002/aenm.201901631 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 33 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Le Corre, Vincent M. A1 - Stolterfoht, Martin A1 - Perdigón-Toro, Lorena A1 - Feuerstein, Markus A1 - Wolff, Christian Michael A1 - Gil-Escrig, Lidon A1 - Bolink, Henk J. A1 - Neher, Dieter A1 - Koster, L. Jan Anton T1 - Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness JF - ACS Applied Energy Materials N2 - Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10(-5) and 10(-2) cm(-2) V-1 s(-1), when compared to the high mobilities, 1-10 cm(-2) V-1 s(-1), measured for perovskites. This work presents a comprehensive analysis of the effect of the mobility, thickness, and doping density of the transport layers based on combined experimental and modeling results of two sets of devices made of a solution-processed high-performing triple-cation (PCE approximate to 20%). The results are also cross-checked on vacuum-processed MAPbI(3) devices. From this analysis, general guidelines on how to optimize a TL are introduced and especially a new and simple formula to easily calculate the amount of doping necessary to counterbalance the low mobility of the TLs. KW - perovskite solar cells KW - transport layers KW - conductivity KW - doping KW - charge transport Y1 - 2019 U6 - https://doi.org/10.1021/acsaem.9b00856 SN - 2574-0962 VL - 2 IS - 9 SP - 6280 EP - 6287 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Würfel, Uli A1 - Perdigón-Toro, Lorena A1 - Kurpiers, Jona A1 - Wolff, Christian Michael A1 - Caprioglio, Pietro A1 - Rech, Jeromy James A1 - Zhu, Jingshuai A1 - Zhan, Xiaowei A1 - You, Wei A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells JF - The journal of physical chemistry letters N2 - Charge extraction in organic solar cells (OSCs) is commonly believed to be limited by bimolecular recombination of photogenerated charges. However, the fill factor of OSCs is usually almost entirely governed by recombination processes that scale with the first order of the light intensity. This linear loss was often interpreted to be a consequence of geminate or trap-assisted recombination. Numerical simulations show that this linear dependence is a direct consequence of the large amount of excess dark charge near the contact. The first-order losses increase with decreasing mobility of minority carriers, and we discuss the impact of several material and device parameters on this loss mechanism. This work highlights that OSCs are especially vulnerable to injected charges as a result of their poor charge transport properties. This implies that dark charges need to be better accounted for when interpreting electro-optical measurements and charge collection based on simple figures of merit. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpclett.9b01175 SN - 1948-7185 VL - 10 IS - 12 SP - 3473 EP - 3480 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Shoaee, Safa A1 - Armin, Ardalan A1 - Stolterfoht, Martin A1 - Hosseini, Seyed Mehrdad A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Decoding Charge Recombination through Charge Generation in Organic Solar Cells JF - Solar RRL N2 - The in-depth understanding of charge carrier photogeneration and recombination mechanisms in organic solar cells is still an ongoing effort. In donor:acceptor (bulk) heterojunction organic solar cells, charge photogeneration and recombination are inter-related via the kinetics of charge transfer states-being singlet or triplet states. Although high-charge-photogeneration quantum yields are achieved in many donor:acceptor systems, only very few systems show significantly reduced bimolecular recombination relative to the rate of free carrier encounters, in low-mobility systems. This is a serious limitation for the industrialization of organic solar cells, in particular when aiming at thick active layers. Herein, a meta-analysis of the device performance of numerous bulk heterojunction organic solar cells is presented for which field-dependent photogeneration, charge carrier mobility, and fill factor are determined. Herein, a "spin-related factor" that is dependent on the ratio of back electron transfer of the triplet charge transfer (CT) states to the decay rate of the singlet CT states is introduced. It is shown that this factor links the recombination reduction factor to charge-generation efficiency. As a consequence, it is only in the systems with very efficient charge generation and very fast CT dissociation that free carrier recombination is strongly suppressed, regardless of the spin-related factor. KW - charge generation KW - charge transfers KW - non-Langevin recombination KW - spin-related factors Y1 - 2019 U6 - https://doi.org/10.1002/solr.201900184 SN - 2367-198X VL - 3 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tockhorn, Philipp A1 - Sutter, Johannes A1 - Cruz Bournazou, Alexandros A1 - Wagner, Philipp A1 - Jäger, Klaus A1 - Yoo, Danbi A1 - Lang, Felix A1 - Grischek, Max A1 - Li, Bor A1 - Li, Jinzhao A1 - Shargaieva, Oleksandra A1 - Unger, Eva A1 - Al-Ashouri, Amran A1 - Köhnen, Eike A1 - Stolterfoht, Martin A1 - Neher, Dieter A1 - Schlatmann, Rutger A1 - Rech, Bernd A1 - Stannowski, Bernd A1 - Albrecht, Steve A1 - Becker, Christiane T1 - Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells JF - Nature nanotechnology N2 - Designing gentle sinusoidal nanotextures enables the realization of high-efficiency perovskite-silicon solar cells
Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80%. Y1 - 2022 U6 - https://doi.org/10.1038/s41565-022-01228-8 SN - 1748-3387 SN - 1748-3395 VL - 17 IS - 11 SP - 1214 EP - 1221 PB - Nature Publishing Group CY - London [u.a.] ER - TY - JOUR A1 - Perdigón-Toro, Lorena A1 - Zhang, Huotian A1 - Markina, Anastaa si A1 - Yuan, Jun A1 - Hosseini, Seyed Mehrdad A1 - Wolff, Christian Michael A1 - Zuo, Guangzheng A1 - Stolterfoht, Martin A1 - Zou, Yingping A1 - Gao, Feng A1 - Andrienko, Denis A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell JF - Advanced materials N2 - Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier. KW - driving force KW - non-fullerene acceptors KW - organic solar cells KW - photocurrent generation Y1 - 2020 U6 - https://doi.org/10.1002/adma.201906763 SN - 0935-9648 SN - 1521-4095 VL - 32 IS - 9 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Sandberg, Oskar J. A1 - Kurpiers, Jona A1 - Stolterfoht, Martin A1 - Neher, Dieter A1 - Meredith, Paul A1 - Shoaee, Safa A1 - Armin, Ardalan T1 - On the question of the need for a built-in potential in Perovskite solar cells JF - Advanced materials interfaces N2 - Perovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-in potential is still needed to avoid the formation of reverse electric fields inside the active layer, and to ensure efficient extraction through the charge transport layers. KW - built-in potential KW - charge collection KW - charge transport layers KW - perovskite solar cells Y1 - 2020 U6 - https://doi.org/10.1002/admi.202000041 SN - 2196-7350 VL - 7 IS - 10 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Wolff, Christian Michael A1 - Canil, Laura A1 - Rehermann, Carolin A1 - Nguyen, Ngoc Linh A1 - Zu, Fengshuo A1 - Ralaiarisoa, Maryline A1 - Caprioglio, Pietro A1 - Fiedler, Lukas A1 - Stolterfoht, Martin A1 - Kogikoski, Junior, Sergio A1 - Bald, Ilko A1 - Koch, Norbert A1 - Unger, Eva L. A1 - Dittrich, Thomas A1 - Abate, Antonio A1 - Neher, Dieter T1 - Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445−1456) T2 - ACS nano Y1 - 2020 U6 - https://doi.org/10.1021/acsnano.0c08081 SN - 1936-0851 SN - 1936-086X VL - 14 IS - 11 SP - 16156 EP - 16156 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Amir, Yohai A1 - Paulke, Andreas A1 - Perdigón-Toro, Lorena A1 - Caprioglio, Pietro A1 - Neher, Dieter T1 - Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells JF - Energy & Environmental Science N2 - Perovskite solar cells now compete with their inorganic counterparts in terms of power conversion efficiency, not least because of their small open-circuit voltage (V-OC) losses. A key to surpass traditional thin-film solar cells is the fill factor (FF). Therefore, more insights into the physical mechanisms that define the bias dependence of the photocurrent are urgently required. In this work, we studied charge extraction and recombination in efficient triple cation perovskite solar cells with undoped organic electron/hole transport layers (ETL/HTL). Using integral time of flight we identify the transit time through the HTL as the key figure of merit for maximizing the fill factor (FF) and efficiency. Complementarily, intensity dependent photocurrent and V-OC measurements elucidate the role of the HTL on the bias dependence of non-radiative and transport-related loss channels. We show that charge transport losses can be completely avoided under certain conditions, yielding devices with FFs of up to 84%. Optimized cells exhibit power conversion efficiencies of above 20% for 6 mm(2) sized pixels and 18.9% for a device area of 1 cm(2). These are record efficiencies for hybrid perovskite devices with dopant-free transport layers, highlighting the potential of this device technology to avoid charge-transport limitations and to approach the Shockley-Queisser limit. Y1 - 2017 U6 - https://doi.org/10.1039/c7ee00899f SN - 1754-5692 SN - 1754-5706 VL - 10 SP - 1530 EP - 1539 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Wang, Qiong A1 - Smith, Joel A. A1 - Skroblin, Dieter A1 - Steele, Julian A. A1 - Wolff, Christian Michael A1 - Caprioglio, Pietro A1 - Stolterfoht, Martin A1 - Köbler, Hans A1 - Turren-Cruz, Silver-Hamill A1 - Li, Meng A1 - Gollwitzer, Christian A1 - Neher, Dieter A1 - Abate, Antonio T1 - Managing phase purities and crystal orientation for high-performance and photostable cesium lead halide perovskite solar cells JF - Solar RRL N2 - Inorganic perovskites with cesium (Cs+) as the cation have great potential as photovoltaic materials if their phase purity and stability can be addressed. Herein, a series of inorganic perovskites is studied, and it is found that the power conversion efficiency of solar cells with compositions CsPbI1.8Br1.2, CsPbI2.0Br1.0, and CsPbI2.2Br0.8 exhibits a high dependence on the initial annealing step that is found to significantly affect the crystallization and texture behavior of the final perovskite film. At its optimized annealing temperature, CsPbI1.8Br1.2 exhibits a pure orthorhombic phase and only one crystal orientation of the (110) plane. Consequently, this allows for the best efficiency of up to 14.6% and the longest operational lifetime, T-S80, of approximate to 300 h, averaged of over six solar cells, during the maximum power point tracking measurement under continuous light illumination and nitrogen atmosphere. This work provides essential progress on the enhancement of photovoltaic performance and stability of CsPbI3 - xBrx perovskite solar cells. KW - cesium lead halides KW - crystal orientation KW - inorganic perovskites KW - ISOS-L-1I protocol KW - phase purity KW - photostability Y1 - 2020 VL - 4 IS - 9 PB - WILEY-VCH CY - Weinheim ER - TY - GEN A1 - Saliba, Michael A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Neher, Dieter A1 - Abate, Antonio T1 - Measuring aging stability of perovskite solar cells T2 - Joule Y1 - 2018 U6 - https://doi.org/10.1016/j.joule.2018.05.005 SN - 2542-4351 VL - 2 IS - 6 SP - 1019 EP - 1024 PB - Cell Press CY - Cambridge ER - TY - GEN A1 - Pisoni, Stefano A1 - Stolterfoht, Martin A1 - Lockinger, Johannes A1 - Moser, Thierry A1 - Jiang, Yan A1 - Caprioglio, Pietro A1 - Neher, Dieter A1 - Buecheler, Stephan A1 - Tiwari, Ayodhya N. T1 - On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C-60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from similar to 1.23 eV for the bare absorber, just similar to 90 meV below the radiative limit, to similar to 1.10 eV when C-60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications via vacuum deposited interlayers (BCP, B4PyMPM, 3TPYMB, and LiF). An improvement in QFLS of similar to 30-40 meV is observed after interlayer deposition and confirmed by comparable improvements in the open-circuit voltage after implementation of these interfacial modifications in flexible PSCs. Further investigations on absorber/hole transport layer (HTL) interface point out the detrimental role of dopants in Spiro-OMeTAD film (widely employed HTL in the community) as recombination centers upon oxidation and light exposure. [GRAPHICS] . T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1110 KW - Perovskite solar cell KW - flexible KW - interface engineering KW - non-radiative recombination KW - quasi-Fermi level splitting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459617 SN - 1866-8372 IS - 1110 ER - TY - JOUR A1 - Pisoni, Stefano A1 - Stolterfoht, Martin A1 - Lockinger, Johannes A1 - Moser, Thierry A1 - Jiang, Yan A1 - Caprioglio, Pietro A1 - Neher, Dieter A1 - Buecheler, Stephan A1 - Tiwari, Ayodhya N. T1 - On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells JF - Science and technology of advanced materials : STAM N2 - The possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C-60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from similar to 1.23 eV for the bare absorber, just similar to 90 meV below the radiative limit, to similar to 1.10 eV when C-60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications via vacuum deposited interlayers (BCP, B4PyMPM, 3TPYMB, and LiF). An improvement in QFLS of similar to 30-40 meV is observed after interlayer deposition and confirmed by comparable improvements in the open-circuit voltage after implementation of these interfacial modifications in flexible PSCs. Further investigations on absorber/hole transport layer (HTL) interface point out the detrimental role of dopants in Spiro-OMeTAD film (widely employed HTL in the community) as recombination centers upon oxidation and light exposure. [GRAPHICS] . KW - Perovskite solar cell KW - flexible KW - interface engineering KW - non-radiative recombination KW - quasi-Fermi level splitting Y1 - 2019 U6 - https://doi.org/10.1080/14686996.2019.1633952 SN - 1468-6996 SN - 1878-5514 VL - 20 SP - 786 EP - 795 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Samson, Stephanie A1 - Rech, Jeromy A1 - Perdigón-Toro, Lorena A1 - Peng, Zhengxing A1 - Shoaee, Safa A1 - Ade, Harald A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - You, Wei T1 - Organic solar cells with large insensitivity to donor polymer molar mass across all acceptor classes JF - ACS applied polymer materials N2 - Donor polymer number-average molar mass (M-n) has long been known to influence organic photovoltaic (OPV) performance via changes in both the polymer properties and the resulting bulk heterojunction morphology. The exact nature of these M-n effects varies from system to system, although there is generally some intermediate M-n that results in optimal performance. Interestingly, our earlier work with the difluorobenzotriazole (FTAZ)-based donor polymer, paired with either N2200 (polymer acceptor) or PC61BM (fullerene acceptor), PcBm demonstrated <10% variation in power conversion efficiency and a consistent morphology over a large span of M-n (30 kg/mol to over 100 kg/mol). Would such insensitivity to polymer M-n still hold true when prevailing small molecular acceptors were used with FTAZ? To answer this question, we explored the impact of FTAZ on OPVs with ITIC, a high-performance small-molecule fused-ring electron acceptor (FREA). By probing the photovoltaic characteristics of the resulting OPVs, we show that a similar FTAZ mn insensitivity is also found in the FTAZ:ITIC system. This study highlights a single-donor polymer which, when paired with an archetypal fullerene, polymer, and FREA, results in systems that are largely insensitive to donor M. Our results may have implications in polymer batch-to-batch reproducibility, in particular, relaxing the need for tight M-n control during synthesis. KW - polymer solar cells KW - conjugated polymers KW - fullerenes KW - fluorination KW - molecular weight KW - non-fullerene acceptors KW - power conversion efficiency Y1 - 2020 U6 - https://doi.org/10.1021/acsapm.0c01041 SN - 2637-6105 VL - 2 IS - 11 SP - 5300 EP - 5308 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Le Corre, Vincent M. A1 - Feuerstein, Markus A1 - Caprioglio, Pietro A1 - Koster, Lambert Jan Anton A1 - Neher, Dieter T1 - Voltage-Dependent Photoluminescence and How It Correlates with the Fill Factor and Open-Circuit Voltage in Perovskite Solar Cells JF - Acs energy letters N2 - Optimizing the photoluminescence (PL) yield of a solar cell has long been recognized as a key principle to maximize the power conversion efficiency. While PL measurements are routinely applied to perovskite films and solar cells under open circuit conditions (V-OC), it remains unclear how the emission depends on the applied voltage. Here, we performed PL(V) measurements on perovskite cells with different hole transport layer thicknesses and doping concentrations, resulting in remarkably different fill factors (FFs). The results reveal that PL(V) mirrors the current-voltage (JV) characteristics in the power-generating regime, which highlights an interesting correlation between radiative and nonradiative recombination losses. In particular, high FF devices show a rapid quenching of PL(V) from open-circuit to the maximum power point. We conclude that, while the PL has to be maximized at V-OC at lower biases < V-OC the PL must be rapidly quenched as charges need to be extracted prior to recombination. Y1 - 2019 U6 - https://doi.org/10.1021/acsenergylett.9b02262 SN - 2380-8195 VL - 4 IS - 12 SP - 2887 EP - 2892 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Armin, Ardalan A1 - Philippa, Bronson A1 - Neher, Dieter T1 - The Role of Space Charge Effects on the Competition between Recombination and Extraction in Solar Cells with Low-Mobility Photoactive Layers JF - The journal of physical chemistry letters N2 - The competition between charge extraction and nongeminate recombination critically determines the current-voltage characteristics of organic solar cells (OSCs) and their fill factor. As a measure of this competition, several figures of merit (FOMs) have been put forward; however, the impact of space charge effects has been either neglected, or not specifically addressed. Here we revisit recently reported FOMs and discuss the role of space charge effects on the interplay between recombination and extraction. We find that space charge effects are the primary cause for the onset of recombination in so-called non-Langevin systems, which also depends on the slower carrier mobility and recombination coefficient. The conclusions are supported with numerical calculations and experimental results of 25 different donor/acceptor OSCs with different charge transport parameters, active layer thicknesses or composition ratios. The findings represent a conclusive understanding of bimolecular recombination for drift dominated photocurrents and allow one to minimize these losses for given device parameters. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpclett.6b02106 SN - 1948-7185 VL - 7 SP - 4716 EP - 4721 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1197 KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525668 SN - 1866-8372 IS - 7 ER -