TY - JOUR A1 - Fürst, Johannes J. A1 - Levermann, Anders T1 - A minimal model for wind- and mixing-driven overturning threshold behavior for both driving mechanisms JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - We present a minimal conceptual model for the Atlantic meridional overturning circulation which incorporates the advection of salinity and the basic dynamics of the oceanic pycnocline. Four tracer transport processes following Gnanadesikan in Science 283(5410):2077-2079, (1999) allow for a dynamical adjustment of the oceanic pycnocline which defines the vertical extent of a mid-latitudinal box. At the same time the model captures the salt-advection feedback (Stommel in Tellus 13(2):224-230, (1961)). Due to its simplicity the model can be solved analytically in the purely wind- and purely mixing-driven cases. We find the possibility of abrupt transition in response to surface freshwater forcing in both cases even though the circulations are very different in physics and geometry. This analytical approach also provides expressions for the critical freshwater input marking the change in the dynamics of the system. Our analysis shows that including the pycnocline dynamics in a salt-advection model causes a decrease in the freshwater sensitivity of its northern sinking up to a threshold at which the circulation breaks down. Compared to previous studies the model is restricted to the essential ingredients. Still, it exhibits a rich behavior which reaches beyond the scope of this study and might be used as a paradigm for the qualitative behaviour of the Atlantic overturning in the discussion of driving mechanisms. KW - Meridional overturning circulation KW - Northern sinking KW - Critical freshwater threshold KW - Overturning sensitivity KW - Conceptual model KW - Stability KW - Atlantic meridional overturning circulation KW - Pycnocline depth KW - Driving mechanism Y1 - 2012 U6 - https://doi.org/10.1007/s00382-011-1003-7 SN - 0930-7575 VL - 38 IS - 1-2 SP - 239 EP - 260 PB - Springer CY - New York ER -