TY - JOUR A1 - Gorenflot, Julien A1 - Paulke, Andreas A1 - Piersimoni, Fortunato A1 - Wolf, Jannic A1 - Kan, Zhipeng A1 - Cruciani, Federico A1 - El Labban, Abdulrahman A1 - Neher, Dieter A1 - Beaujuge, Pierre M. A1 - Laquai, Frederic T1 - From recombination dynamics to device performance BT - quantifying the efficiency of exciton dissociation, charge separation, and extraction in bulk heterojunction solar cells with Fluorine-Substituted polymer donors JF - dvanced energy materials N2 - An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM. KW - bulk heterojunction KW - charge generation yield KW - charge recombination yield KW - polymer solar cells KW - transient absorption spectroscopy Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201701678 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Shivhare, Rishi A1 - Erdmann, Tim A1 - Hoermann, Ulrich A1 - Collado-Fregoso, Elisa A1 - Zeiske, Stefan A1 - Benduhn, Johannes A1 - Ullbrich, Sascha A1 - Huebner, Rene A1 - Hambsch, Mike A1 - Kiriy, Anton A1 - Voit, Brigitte A1 - Neher, Dieter A1 - Vandewal, Koen A1 - Mannsfeld, Stefan C. B. T1 - Alkyl Branching Position in Diketopyrrolopyrrole Polymers BT - Interplay between Fibrillar Morphology and Crystallinity and Their Effect on Photogeneration and Recombination in Bulk-Heterojunction Solar Cells JF - Chemistry of materials : a publication of the American Chemical Society N2 - Diketopyrrolopyrrole (DPP)-based donor acceptor copolymers have gained a significant amount of research interest in the organic electronics community because of their high charge carrier mobilities in organic field-effect transistors (OFETs) and their ability to harvest near-infrared (NIR) photons in solar cells. In this study, we have synthesized four DPP based donor-acceptor copolymers with variations in the donor unit and the branching point of the solubilizing alkyl chains (at the second or sixth carbon position). Grazing incidence wide-angle X-ray scattering (GIWAXS) results suggest that moving the branching point further away from the polymer backbone increases the tendency for aggregation and yields polymer phases with a higher degree of crystallinity (DoC). The polymers were blended with PC70BM and used as active layers in solar cells. A careful analysis of the energetics of the neat polymer and blend films reveals that the charge-transfer state energy (E-CT) of the blend films lies exceptionally close to the singlet energy of the donor (E-D*), indicating near zero electron transfer losses. The difference between the optical gap and open-circuit voltage (V-OC) is therefore determined to be due to rather high nonradiative 418 +/- 13 mV) and unavoidable radiative voltage losses (approximate to 255 +/- 8 mV). Even though the four materials have similar optical gaps, the short-circuit current density (J(SC)) covers a vast span from 7 to 18 mA cm(-2) for the best performing system. Using photoluminescence (PL) quenching and transient charge extraction techniques, we quantify geminate and nongeminate losses and find that fewer excitons reach the donor-acceptor interface in polymers with further away branching points due to larger aggregate sizes. In these material systems, the photogeneration is therefore mainly limited by exciton harvesting efficiency. Y1 - 2018 U6 - https://doi.org/10.1021/acs.chemmater.8b02739 SN - 0897-4756 SN - 1520-5002 VL - 30 IS - 19 SP - 6801 EP - 6809 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Braunger, Steffen A1 - Mundt, Laura E. A1 - Wolff, Christian Michael A1 - Mews, Mathias A1 - Rehermann, Carolin A1 - Jost, Marko A1 - Tejada, Alvaro A1 - Eisenhauer, David A1 - Becker, Christiane A1 - Andres Guerra, Jorge A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Schubert, Martin C. A1 - Rech, Bernd A1 - Albrecht, Steve T1 - Cs(x)FA(1-x)Pb(l(1-y)Br(y))(3) Perovskite Compositions BT - the Appearance of Wrinkled Morphology and its Impact on Solar Cell Performance JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We report on the formation of wrinkle-patterned surface morphologies in cesium formamidinium-based Cs(x)FA(1-y)Pb(I1-yBry)(3) perovskite compositions with x = 0-0.3 and y = 0-0.3 under various spin-coating conditions. By varying the Cs and Br contents, the perovskite precursor solution concentration and the spin-coating procedure, the occurrence and characteristics of the wrinkle-shaped morphology can be tailored systematically. Cs(0.17)FA(0.83)Pb(I0.83Br0.17)(3) perovskite layers were analyzed regarding their surface roughness, microscopic structure, local and overall composition, and optoelectronic properties. Application of these films in p-i-n perovskite solar cells (PSCs) with indium-doped tin oxide/NiOx/perovskite/C-60/bathocuproine/Cu architecture resulted in up to 15.3 and 17.0% power conversion efficiency for the flat and wrinkled morphology, respectively. Interestingly, we find slightly red-shifted photoluminescence (PL) peaks for wrinkled areas and we are able to directly correlate surface topography with PL peak mapping. This is attributed to differences in the local grain size, whereas there is no indication for compositional demixing in the films. We show that the perovskite composition, crystallization kinetics, and layer thickness strongly influence the formation of wrinkles which is proposed to be related to the release of compressive strain during perovskite crystallization. Our work helps us to better understand film formation and to further improve the efficiency of PSCs with widely used mixed-perovskite compositions. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b06459 SN - 1932-7447 SN - 1932-7455 VL - 122 IS - 30 SP - 17123 EP - 17135 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Benduhn, Johannes A1 - Piersimoni, Fortunato A1 - Londi, Giacomo A1 - Kirch, Anton A1 - Widmer, Johannes A1 - Koerner, Christian A1 - Beljonne, David A1 - Neher, Dieter A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Impact of triplet excited states on the open-circuit voltage of organic solar cells JF - dvanced energy materials N2 - The best organic solar cells (OSCs) achieve comparable peak external quantum efficiencies and fill factors as conventional photovoltaic devices. However, their voltage losses are much higher, in particular those due to nonradiative recombination. To investigate the possible role of triplet states on the donor or acceptor materials in this process, model systems comprising Zn- and Cu-phthalocyanine (Pc), as well as fluorinated versions of these donors, combined with C-60 as acceptor are studied. Fluorination allows tuning the energy level alignment between the lowest energy triplet state (T-1) and the charge-transfer (CT) state, while the replacement of Zn by Cu as the central metal in the Pcs leads to a largely enhanced spin-orbit coupling. Only in the latter case, a substantial influence of the triplet state on the nonradiative voltage losses is observed. In contrast, it is found that for a large series of typical OSC materials, the relative energy level alignment between T-1 and the CT state does not substantially affect nonradiative voltage losses. KW - charge-transfer states KW - nonradiative voltage losses KW - organic solar cells KW - triplet excited states Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201800451 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 21 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hörmann, Ulrich A1 - Zeiske, Stefan A1 - Piersimoni, Fortunato A1 - Hoffmann, Lukas A1 - Schlesinger, Raphael A1 - Koch, Norbert A1 - Riedl, Thomas A1 - Andrienko, Denis A1 - Neher, Dieter T1 - Stark effect of hybrid charge transfer states at planar ZnO/organic interfaces JF - Physical review : B, Condensed matter and materials physics N2 - We investigate the bias dependence of the hybrid charge transfer state emission at planar heterojunctions between the metal oxide acceptor ZnO and three donor molecules. The electroluminescence peak energy linearly increases with the applied bias, saturating at high fields. Variation of the organic layer thickness and deliberate change of the ZnO conductivity through controlled photodoping allow us to confirm that this bias-induced spectral shift relates to the internal electric field in the organic layer rather than the filling of states at the hybrid interface. We show that existing continuum models overestimate the hole delocalization and propose a simple electrostatic model in which the linear and quadratic Stark effects are explained by the electrostatic interaction of a strongly polarizable molecular cation with its mirror image. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevB.98.155312 SN - 2469-9950 SN - 2469-9969 VL - 98 IS - 15 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Kurpiers, Jona A1 - Ferron, Thomas A1 - Roland, Steffen A1 - Jakoby, Marius A1 - Thiede, Tobias A1 - Jaiser, Frank A1 - Albrecht, Steve A1 - Janietz, Silvia A1 - Collins, Brian A. A1 - Howard, Ian A. A1 - Neher, Dieter T1 - Probing the pathways of free charge generation in organic bulk heterojunction solar cells JF - Nature Communications N2 - The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-04386-3 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Sini, Gjergji A1 - Schubert, Marcel A1 - Risko, Chad A1 - Roland, Steffen A1 - Lee, Olivia P. A1 - Chen, Zhihua A1 - Richter, Thomas V. A1 - Dolfen, Daniel A1 - Coropceanu, Veaceslav A1 - Ludwigs, Sabine A1 - Scherf, Ullrich A1 - Facchetti, Antonio A1 - Frechet, Jean M. J. A1 - Neher, Dieter T1 - On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface JF - Advanced energy materials N2 - Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules. KW - donor-acceptor interfaces KW - energy gradients KW - geometrical deformations KW - nonfullerene acceptors KW - organic photovoltaics KW - photocurrent generation KW - polymer solar cells Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201702232 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ran, Niva A. A1 - Love, John A. A1 - Heiber, Michael C. A1 - Jiao, Xuechen A1 - Hughes, Michael P. A1 - Karki, Akchheta A1 - Wang, Ming A1 - Brus, Viktor V. A1 - Wang, Hengbin A1 - Neher, Dieter A1 - Ade, Harald A1 - Bazan, Guillermo C. A1 - Thuc-Quyen Nguyen, T1 - Charge generation and recombination in an organic solar cell with low energetic offsets JF - dvanced energy materials N2 - Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short-circuit currents (J(SC)) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open-circuit voltages (V-OC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl-C61-butyric acid methyl ester (PC61BM), that achieves a high V-OC (0.9 V) with very low energy losses (E-loss = 0.52 eV) from the energy of absorbed photons, a respectable J(SC) (13 mA cm(-2)), but a limited FF (54%) is reported. Despite the low energetic offset, the system does not suffer from field-dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge-carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the J(SC), V-OC, and FF can all be improved, even with very low energetic offsets. KW - energetic offset KW - fill factor KW - morphology KW - organic solar cells KW - recombination Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201701073 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Alqahtani, Obaid A1 - Babics, Maxime A1 - Gorenflot, Julien A1 - Savikhin, Victoria A1 - Ferron, Thomas A1 - Balawi, Ahmed H. A1 - Paulke, Andreas A1 - Kan, Zhipeng A1 - Pope, Michael A1 - Clulow, Andrew J. A1 - Wolf, Jannic A1 - Burn, Paul L. A1 - Gentle, Ian R. A1 - Neher, Dieter A1 - Toney, Michael F. A1 - Laquai, Frederic A1 - Beaujuge, Pierre M. A1 - Collins, Brian A. T1 - Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors JF - Advanced energy materials N2 - The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh2)(2), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes. KW - charge transport KW - domain purity KW - microscopy KW - mixed domains KW - organic solar cells KW - photovoltaic devices KW - resonant X-ray scattering KW - small molecules KW - transient spectroscopy Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201702941 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 19 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Li, Tian-yi A1 - Benduhn, Johannes A1 - Li, Yue A1 - Jaiser, Frank A1 - Spoltore, Donato A1 - Zeika, Olaf A1 - Ma, Zaifei A1 - Neher, Dieter A1 - Vandewal, Koen A1 - Leo, Karl T1 - Boron dipyrromethene (BODIPY) with meso-perfluorinated alkyl substituents as near infrared donors in organic solar cells JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Three furan-fused BODIPYs were synthesized with perfluorinated methyl, ethyl and n-propyl groups on the meso-carbon. They were obtained with high yields by reacting the furan-fused 2-carboxylpyrrole in corresponding perfluorinated acid and anhydride. With the increase in perfluorinated alkyl chain length, the molecular packing in the single crystal is influenced, showing increasing stacking distance and decreasing slope angle. All the BODIPYs were characterized as intense absorbers in near infrared region in solid state, peaking at similar to 800 nm with absorption coefficient of over 280 000 cm(-1). Facilitated by high thermal stability, the furan-fused BODIPYs were employed in vacuum-deposited organic solar cells as electron donors. All devices exhibit PCE over 6.0% with the EQE maximum reaching 70% at similar to 790 nm. The chemical modification of the BODIPY donors have certain influence on the active layer morphology, and the highest PCE of 6.4% was obtained with a notably high jsc of 13.6 mA cm(-2). Sensitive EQE and electroluminance studies indicated that the energy losses generated by the formation of a charge transfer state and the radiative recombination at the donor-acceptor interface were comparable in the range of 0.14-0.19 V, while non-radiative recombination energy loss of 0.38 V was the main energy loss route resulting in the moderate V-oc of 0.76 V. Y1 - 2018 U6 - https://doi.org/10.1039/c8ta06261g SN - 2050-7488 SN - 2050-7496 VL - 6 IS - 38 SP - 18583 EP - 18591 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Saliba, Michael A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Neher, Dieter A1 - Abate, Antonio T1 - Measuring aging stability of perovskite solar cells T2 - Joule Y1 - 2018 U6 - https://doi.org/10.1016/j.joule.2018.05.005 SN - 2542-4351 VL - 2 IS - 6 SP - 1019 EP - 1024 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Zhang, Shanshan A1 - Stolterfoht, Martin A1 - Armin, Ardalan A1 - Lin, Qianqian A1 - Zu, Fengshuo A1 - Sobus, Jan A1 - Jin, Hui A1 - Koch, Norbert A1 - Meredith, Paul A1 - Burn, Paul L. A1 - Neher, Dieter T1 - Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells JF - ACS applied materials & interfaces N2 - Engineering the interface between the perovskite absorber and the charge-transporting layers has become an important method for improving the charge extraction and open-circuit voltage (V-OC) of hybrid perovskite solar cells. Conjugated polymers are particularly suited to form the hole-transporting layer, but their hydrophobicity renders it difficult to solution-process the perovskite absorber on top. Herein, oxygen plasma treatment is introduced as a simple means to change the surface energy and work function of hydrophobic polymer interlayers for use as p-contacts in perovskite solar cells. We find that upon oxygen plasma treatment, the hydrophobic surfaces of different prototypical p-type polymers became sufficiently hydrophilic to enable subsequent perovskite junction processing. In addition, the oxygen plasma treatment also increased the ionization potential of the polymer such that it became closer to the valance band energy of the perovskite. It was also found that the oxygen plasma treatment could increase the electrical conductivity of the p-type polymers, facilitating more efficient charge extraction. On the basis of this concept, inverted MAPbI(3) perovskite devices with different oxygen plasma-treated polymers such as P3HT, P3OT, polyTPD, or PTAA were fabricated with power conversion efficiencies of up to 19%. KW - organohalide lead perovskites KW - solar cells KW - surface wetting KW - work function KW - oxygen plasma KW - transport layer Y1 - 2018 U6 - https://doi.org/10.1021/acsami.8b02503 SN - 1944-8244 VL - 10 IS - 25 SP - 21681 EP - 21687 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Zhang, Shanshan A1 - Hages, Charles J. A1 - Rothhardt, Daniel A1 - Albrecht, Steve A1 - Burn, Paul L. A1 - Meredith, Paul A1 - Unold, Thomas A1 - Neher, Dieter T1 - Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells JF - Nature Energy N2 - The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pintype perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V-oc) of the complete cell to similar to 1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm(2) perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high V-oc (1.17 V) and record fill factor (>81%). KW - Energy science and technology KW - Solar cells Y1 - 2018 U6 - https://doi.org/10.1038/s41560-018-0219-8 SN - 2058-7546 VL - 3 IS - 10 SP - 847 EP - 854 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Shoaee, Safa A1 - Stolterfoht, Martin A1 - Neher, Dieter T1 - The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymer-Based Solar Cells JF - dvanced energy materials N2 - Organic semiconductors are of great interest for a broad range of optoelectronic applications due to their solution processability, chemical tunability, highly scalable fabrication, and mechanical flexibility. In contrast to traditional inorganic semiconductors, organic semiconductors are intrinsically disordered systems and therefore exhibit much lower charge carrier mobilities-the Achilles heel of organic photovoltaic cells. In this progress review, the authors discuss recent important developments on the impact of charge carrier mobility on the charge transfer state dissociation, and the interplay of free charge extraction and recombination. By comparing the mobilities on different timescales obtained by different techniques, the authors highlight the dispersive nature of these materials and how this reflects on the key processes defining the efficiency of organic photovoltaics. KW - charge generation KW - charge recombination KW - extraction KW - mobility KW - organic solar cells KW - polymer:fullerene bulk heterojunction Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201703355 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 28 PB - Wiley-VCH CY - Weinheim ER -