TY - JOUR A1 - Mazurek, P. A1 - Yu, L. A1 - Gerhard, Reimund A1 - Wirges, Werner A1 - Skov, A. L. T1 - Glycerol as high-permittivity liquid filler in dielectric silicone elastomers JF - Journal of applied polymer science N2 - A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer material is based on a commercially available poly(dimethylsiloxane) composition, which has been modified by embedding glycerol droplets into its matrix. The approach has two major advantages that make the material useful in a dielectric actuator. First, the glycerol droplets efficiently enhance the dielectric constant, which can reach astonishingly high values in the composite. Second, the liquid filler also acts as a softener that effectively decreases the elastic modulus of the composite. In combination with very low cost and easy preparation, the two property enhancements lead to an extremely attractive dielectric elastomer material. Experimental permittivity data are compared to various theoretical models that predict relative permittivity changes as a function of filler loading, and the applicability of the models is discussed. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44153. KW - crosslinking KW - dielectric properties KW - elastomers KW - sensors and actuators Y1 - 2016 U6 - https://doi.org/10.1002/app.44153 SN - 0021-8995 SN - 1097-4628 VL - 133 PB - Wiley-Blackwell CY - Hoboken ER - TY - GEN A1 - Yadavalli, Nataraja Sekhar A1 - Loebner, Sarah A1 - Papke, Thomas A1 - Sava, Elena A1 - Hurduc, Nicolae A1 - Santer, Svetlana T1 - A comparative study of photoinduced deformation in azobenzene containing polymer films T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In this paper two groups supporting different views on the mechanism of light induced polymer deformation argue about the respective underlying theoretical conceptions, in order to bring this interesting debate to the attention of the scientific community. The group of Prof. Nicolae Hurduc supports the model claiming that the cyclic isomerization of azobenzenes may cause an athermal transition of the glassy azobenzene containing polymer into a fluid state, the so-called photo-fluidization concept. This concept is quite convenient for an intuitive understanding of the deformation process as an anisotropic flow of the polymer material. The group of Prof. Svetlana Santer supports the re-orientational model where the mass-transport of the polymer material accomplished during polymer deformation is stated to be generated by the light-induced re-orientation of the azobenzene side chains and as a consequence of the polymer backbone that in turn results in local mechanical stress, which is enough to irreversibly deform an azobenzene containing material even in the glassy state. For the debate we chose three polymers differing in the glass transition temperature, 32 °C, 87 °C and 95 °C, representing extreme cases of flexible and rigid materials. Polymer film deformation occurring during irradiation with different interference patterns is recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. We also demonstrated the unique behaviour of azobenzene containing polymeric films to switch the topography in situ and reversibly by changing the irradiation conditions. We discuss the results of reversible deformation of three polymers induced by irradiation with intensity (IIP) and polarization (PIP) interference patterns, and the light of homogeneous intensity in terms of two approaches: the re-orientational and the photo-fluidization concepts. Both agree in that the formation of opto-mechanically induced stresses is a necessary prerequisite for the process of deformation. Using this argument, the deformation process can be characterized either as a flow or mass transport. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 458 KW - light-induced deformation KW - surface-relief gratings KW - optical near-field KW - chromophore orientations KW - atomic-force; nano-objects KW - brushes KW - raman KW - elastomers KW - microscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413510 SN - 1866-8372 IS - 458 ER -