TY - THES A1 - Hintsche, Marius T1 - Locomotion of a bacterium with a polar bundle of flagella T1 - Fortbewegung eines Bakteriums mit einem polaren Flagellenbündel BT - insights into movement and navigation by fluorescence high speed microscopy BT - Erkentnisse über Bewegung und Navigation mittels Hochgeschwindigkeitsfluoreszenzmikroskopie N2 - Movement and navigation are essential for many organisms during some parts of their lives. This is also true for bacteria, which can move along surfaces and swim though liquid environments. They are able to sense their environment, and move towards environmental cues in a directed fashion. These abilities enable microbial lifecyles in biofilms, improved food uptake, host infection, and many more. In this thesis we study aspects of the swimming movement - or motility - of the soil bacterium (P. putida). Like most bacteria, P. putida swims by rotating its helical flagella, but their arrangement differs from the main model organism in bacterial motility research: (E. coli). P. putida is known for its intriguing motility strategy, where fast and slow episodes can occur after each other. Up until now, it was not known how these two speeds can be produced, and what advantages they might confer to this bacterium. Normally the flagella, the main component of thrust generation in bacteria, are not observable by ordinary light microscopy. In order to elucidate this behavior, we therefore used a fluorescent staining technique on a mutant strain of this species to specifically label the flagella, while leaving the cell body only faintly stained. This allowed us to image the flagella of the swimming bacteria with high spacial and temporal resolution with a customized high speed fluorescence microscopy setup. Our observations show that P. putida can swim in three different modes. First, It can swim with the flagella pushing the cell body, which is the main mode of swimming motility previously known from other bacteria. Second, it can swim with the flagella pulling the cell body, which was thought not to be possible in situations with multiple flagella. Lastly, it can wrap its flagellar bundle around the cell body, which results in a speed wich is slower by a factor of two. In this mode, the flagella are in a different physical conformation with a larger radius so the cell body can fit inside. These three swimming modes explain the previous observation of two speeds, as well as the non strict alternation of the different speeds. Because most bacterial swimming in nature does not occur in smoothly walled glass enclosures under a microscope, we used an artificial, microfluidic, structured system of obstacles to study the motion of our model organism in a structured environment. Bacteria were observed in microchannels with cylindrical obstacles of different sizes and with different distances with video microscopy and cell tracking. We analyzed turning angles, run times, and run length, which we compared to a minimal model for movement in structured geometries. Our findings show that hydrodynamic interactions with the walls lead to a guiding of the bacteria along obstacles. When comparing the observed behavior with the statics of a particle that is deflected with every obstacle contact, we find that cells run for longer distances than that model. Navigation in chemical gradients is one of the main applications of motility in bacteria. We studied the swimming response of P. putida cells to chemical stimuli (chemotaxis) of the common food preservative sodium benzoate. Using a microfluidic gradient generation device, we created gradients of varying strength, and observed the motion of cells with a video microscope and subsequent cell tracking. Analysis of different motility parameters like run lengths and times, shows that P. putida employs the classical chemotaxis strategy of E. coli: runs up the gradient are biased to be longer than those down the gradient. Using the two different run speeds we observed due to the different swimming modes, we classify runs into `fast' and `slow' modes with a Gaussian mixture model (GMM). We find no evidence that P. putida's uses its swimming modes to perform chemotaxis. In most studies of bacterial motility, cell tracking is used to gather trajectories of individual swimming cells. These trajectories then have to be decomposed into run sections and tumble sections. Several algorithms have been developed to this end, but most require manual tuning of a number of parameters, or extensive measurements with chemotaxis mutant strains. Together with our collaborators, we developed a novel motility analysis scheme, based on generalized Kramers-Moyal-coefficients. From the underlying stochastic model, many parameters like run length etc., can be inferred by an optimization procedure without the need for explicit run and tumble classification. The method can, however, be extended to a fully fledged tumble classifier. Using this method, we analyze E. coli chemotaxis measurements in an aspartate analog, and find evidence for a chemotactic bias in the tumble angles. N2 - Bewegung und Navigation sind für viele Organismen in einigen Bereichen ihres Lebens unerlässlich. Dies gilt auch für Bakterien, die sich entlang von Oberflächen bewegen und durch Flüssigkeiten schwimmen können. Sie sind in der Lage, ihre Umgebung wahr zu nehmen und sich gezielt auf Signale in der Umwelt zuzubewegen. Diese Fähigkeiten ermöglichen mikrobielle Lebenszyklen in Biofilmen, verbesserte Nahrungsaufnahme, Wirtsinfektion und vieles mehr. In dieser Arbeit untersuchen wir Aspekte der Schwimmbewegung - oder Motilität - des Bodenbakteriums Pseudomonas putida (P. putida). Wie die meisten Bakterien schwimmt P. putida durch Rotation seiner schraubenförmigen Flagellen, aber ihre Anordnung unterscheidet sich vom Hauptmodellorganismus in der bakteriellen Motilitätsforschung: Escherichia coli (E. coli). P. putida ist bekannt für seine faszinierende Motilitätsstrategie, bei der schnelle und langsame Episoden hintereinander auftreten können. Bislang war nicht bekannt, wie diese beiden Geschwindigkeiten erzeugt werden können und welche Vorteile sie diesem Bakterium bringen können. Normalerweise sind die Flagellen, die Hauptkomponente der Schuberzeugung bei Bakterien, mit herkömmlicher Lichtmikroskopie nicht zu beobachten. Um dieses Verhalten zu verdeutlichen, haben wir daher eine Fluoreszenzfärbetechnik an einem Mutantenstamm dieser Spezies eingesetzt, um die Flagellen spezifisch zu markieren und gleichzeitig den Zellkörper nur schwach gefärbt zu lassen. Dies ermöglichte es uns, die Geißeln der schwimmenden Bakterien mit hoher räumlicher und zeitlicher Auflösung mit einem maßgeschneiderten Hochgeschwindigkeits-Fluoreszenzmikroskopie-Setup darzustellen. Unsere Beobachtungen zeigen, dass P. putida in drei verschiedenen Modi schwimmen kann. Erstens kann es mit den Flagellen den Zellkörper vorwärts drücken, was der wichtigste Modus der Schwimmmotilität ist, der zuvor von anderen Bakterien bekannt war. Zweitens kann es mit den Flagellen den Zellkörper hinter sich her ziehen, was in Situationen mit mehreren Flagellen für nicht möglich gehalten wurde. Schließlich kann es sein Flagellenbündel um den Zellkörper wickeln, was zu einer um den Faktor zwei verlangsamten Geschwindigkeit führt. In diesem Modus befinden sich die Flagellen in einer anderen physikalischen Konformation mit einem größeren Radius, so dass der Zellkörper hineinpassen kann. Diese drei Schwimmmodi erklären die vorherige Beobachtung von zwei Geschwindigkeiten sowie das nicht strenge Abwechseln der verschiedenen Geschwindigkeiten. Da das Schwimmen von Bakterien in der Natur nicht in glattwandigen Glaskammern unter dem Mikroskop stattfindet, haben wir ein künstliches, mikrofluidisches, strukturiertes System von Hindernissen verwendet, um die Bewegung unseres Modellorganismus in einer strukturierten Umgebung zu untersuchen. Bakterien wurden in Mikrokanälen mit zylindrischen Hindernissen unterschiedlicher Größe und mit unterschiedlichen Abständen mit Videomikroskopie und Zelltracking beobachtet. Wir analysierten Turn-Winkel, Run-Zeiten und Run-Längen, die wir mit einem Minimalmodell für die Bewegung in strukturierten Geometrien verglichen haben. Unsere Ergebnisse zeigen, dass hydrodynamische Wechselwirkungen mit den Wänden zu einer Leitung der Bakterien entlang von Hindernissen führen. Vergleicht man das beobachtete Verhalten mit der Statik eines Partikels, das bei jedem Hinderniskontakt umgelenkt wird, so stellt man fest, dass Zellen über längere Strecken Laufen als in dieses Modell. Die Navigation in chemischen Gradienten ist eine der Hauptapplikation der Motilität bei Bakterien. Wir untersuchten die Schwimmreaktion von P. putida Zellen auf chemische Reize (Chemotaxis) des gängigen Lebensmittelkonservierungsmittels Natriumbenzoat. Mit einem mikrofluidischen Gradientengenerator erzeugten wir Gradienten unterschiedlicher Stärke und beobachteten die Bewegung der Zellen mit einem Videomikroskop und anschließendem Zelltracking. Die Analyse verschiedener Motilitätsparameter wie Lauflängen und -zeiten zeigt, dass P. putida die klassische Chemotaxiestrategie von E. coli anwendet: Läufe gradientenaufwärts sind im Mittel länger sein als solche gradientenabwärts. Mit den beiden verschiedenen Laufgeschwindigkeiten, die wir aufgrund der unterschiedlichen Schwimmmodi beobachtet haben, klassifizieren wir Läufe in schnelle und langsame Modi mit einem "Gaussian Mixture Model" (GMM). Wir finden keinen Beweis dafür, dass P. putida seine Schwimmmodi nutzt, um Chemotaxis durchzuführen. In den meisten Studien zur bakteriellen Motilität wird das Zelltracking verwendet, um die Trajektorien einzelner schwimmender Zellen zu erfassen. Diese Trajektorien müssen dann in Lauf- und Wendeabschnitte (Runs und Turns) zerlegt werden. Mehrere Algorithmen wurden zu diesem Zweck entwickelt, aber die meisten erfordern eine manuelle Abstimmung einer Reihe von Parametern oder umfangreiche Messungen mit chemotaktischen Mutantenstämmen. Zusammen mit unseren Mitarbeitern haben wir ein neuartiges Motilitätsanalyseschema entwickelt, das auf verallgemeinerten Kramers-Moyal-Koeffizienten basiert. Aus dem zugrunde liegenden stochastischen Modell können viele Parameter wie Lauflänge etc. durch ein Optimierungsverfahren abgeleitet werden, ohne dass eine explizite Run und Turn Klassifizierung erforderlich ist. Das Verfahren kann jedoch zu einem vollwertigen Klassifizierer ausgebaut werden. Mit dieser Methode analysieren wir E. coli Chemotaxis Messungen in einem Gradienten eines Aspartat analogen Chemoattractors und finden Beweise für eine chemotaktische Variation der Tumble-Winkeln. KW - bacteria KW - motility KW - chemotaxis KW - Bakterien KW - Motilität KW - Chemotaxis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426972 ER - TY - THES A1 - Kraikivski, Pavel T1 - Non-equilibrium dynamics of adsorbed polymers and filaments T1 - Nichtgleichgewichtsdynamik adsorbierter Polymere und Filamente N2 - In the present work, we discuss two subjects related to the nonequilibrium dynamics of polymers or biological filaments adsorbed to two-dimensional substrates. The first part is dedicated to thermally activated dynamics of polymers on structured substrates in the presence or absence of a driving force. The structured substrate is represented by double-well or periodic potentials. We consider both homogeneous and point driving forces. Point-like driving forces can be realized in single molecule manipulation by atomic force microscopy tips. Uniform driving forces can be generated by hydrodynamic flow or by electric fields for charged polymers. In the second part, we consider collective filament motion in motility assays for motor proteins, where filaments glide over a motor-coated substrate. The model for the simulation of the filament dynamics contains interactive deformable filaments that move under the influence of forces from molecular motors and thermal noise. Motor tails are attached to the substrate and modeled as flexible polymers (entropic springs), motor heads perform a directed walk with a given force-velocity relation. We study the collective filament dynamics and pattern formation as a function of the motor and filament density, the force-velocity characteristics, the detachment rate of motor proteins and the filament interaction. In particular, the formation and statistics of filament patterns such as nematic ordering due to motor activity or clusters due to blocking effects are investigated. Our results are experimentally accessible and possible experimental realizations are discussed. N2 - In der vorliegenden Arbeit behandeln wir zwei Probleme aus dem Gebiet der Nichtgleichgewichtsdynamik von Polymeren oder biologischen Filamenten, die an zweidimensionale Substrate adsorbieren. Der erste Teil befasst sich mit der thermisch aktivierten Dynamik von Polymeren auf strukturierten Substraten in An- oder Abwesenheit einer treibenden Kraft. Das strukturierte Substrat wird durch Doppelmulden- oder periodische Potentiale dargestellt. Wir betrachten sowohl homogene treibende Kräfte als auch Punktkräfte. Punktkräfte können bei der Manipulation einzelner Moleküle mit die Spitze eines Rasterkraftmikroskops realisiert werden. Homogene Kräfte können durch einen hydrodynamischen Fluss oder ein elektrisches Feld im Falle geladener Polymere erzeugt werden. Im zweiten Teil betrachten wir die kollektive Bewegung von Filamenten in Motility-Assays, in denen Filamente über ein mit molekularen Motoren überzogenes Substrat gleiten. Das Modell zur Simulation der Filamentdynamik beinhaltet wechselwirkende, deformierbare Filamente, die sich unter dem Einfluss von Kräften, die durch molekulare Motoren erzeugt werden, sowie thermischem Rauschen bewegen. Die Schaftdomänen der Motoren sind am Substrat angeheftet und werden als flexible Polymere (entropische Federn) modelliert. Die Kopfregionen der Motoren vollführen eine gerichtete Schrittbewegung mit einer gegebenen Kraft-Geschwindigkeitsbeziehung. Wir untersuchen die kollektive Filamentdynamik und die Ausbildung von Mustern als Funktion der Motor- und der Filamentdichte, der Kraft-Geschwindigkeitscharakteristik, der Ablöserate der Motorproteine und der Filamentwechselwirkung. Insbesondere wird die Bildung und die Statistik der Filamentmuster, wie etwa die nematische Anordnung aufgrund der Motoraktivität oder die Clusterbildung aufgrund von Blockadeeffekten, untersucht. Unsere Ergebnisse sind experimentell zugänglich und mögliche experimentelle Realisierungen werden diskutiert. KW - Polymere KW - Nichtgleichgewicht KW - Nichtgleichgewichts-Phasenübergang KW - Filament KW - Molekularer Motor KW - Motilität KW - Adsorption KW - thermisch aktivierte Dynamik KW - strukturierte Substrate KW - Motility-Assay KW - non-equilibrium dynamics KW - adsorption KW - polymers KW - filaments KW - motility assay KW - molecular motors KW - structured substrates KW - thermally activated dynamics Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5979 ER - TY - THES A1 - Theves, Matthias T1 - Bacterial motility and growth in open and confined environments T1 - Bacterial motility and growth in open and confined environments N2 - In the presence of a solid-liquid or liquid-air interface, bacteria can choose between a planktonic and a sessile lifestyle. Depending on environmental conditions, cells swimming in close proximity to the interface can irreversibly attach to the surface and grow into three-dimensional aggregates where the majority of cells is sessile and embedded in an extracellular polymer matrix (biofilm). We used microfluidic tools and time lapse microscopy to perform experiments with the polarly flagellated soil bacterium Pseudomonas putida (P. putida), a bacterial species that is able to form biofilms. We analyzed individual trajectories of swimming cells, both in the bulk fluid and in close proximity to a glass-liquid interface. Additionally, surface related growth during the early phase of biofilm formation was investigated. In the bulk fluid, P.putida shows a typical bacterial swimming pattern of alternating periods of persistent displacement along a line (runs) and fast reorientation events (turns) and cells swim with an average speed around 24 micrometer per second. We found that the distribution of turning angles is bimodal with a dominating peak around 180 degrees. In approximately six out of ten turning events, the cell reverses its swimming direction. In addition, our analysis revealed that upon a reversal, the cell systematically changes its swimming speed by a factor of two on average. Based on the experimentally observed values of mean runtime and rotational diffusion, we presented a model to describe the spreading of a population of cells by a run-reverse random walker with alternating speeds. We successfully recover the mean square displacement and, by an extended version of the model, also the negative dip in the directional autocorrelation function as observed in the experiments. The analytical solution of the model demonstrates that alternating speeds enhance a cells ability to explore its environment as compared to a bacterium moving at a constant intermediate speed. As compared to the bulk fluid, for cells swimming near a solid boundary we observed an increase in swimming speed at distances below d= 5 micrometer and an increase in average angular velocity at distances below d= 4 micrometer. While the average speed was maximal with an increase around 15% at a distance of d= 3 micrometer, the angular velocity was highest in closest proximity to the boundary at d=1 micrometer with an increase around 90% as compared to the bulk fluid. To investigate the swimming behavior in a confinement between two solid boundaries, we developed an experimental setup to acquire three-dimensional trajectories using a piezo driven objective mount coupled to a high speed camera. Results on speed and angular velocity were consistent with motility statistics in the presence of a single boundary. Additionally, an analysis of the probability density revealed that a majority of cells accumulated near the upper and lower boundaries of the microchannel. The increase in angular velocity is consistent with previous studies, where bacteria near a solid boundary were shown to swim on circular trajectories, an effect which can be attributed to a wall induced torque. The increase in speed at a distance of several times the size of the cell body, however, cannot be explained by existing theories which either consider the drag increase on cell body and flagellum near a boundary (resistive force theory) or model the swimming microorganism by a multipole expansion to account for the flow field interaction between cell and boundary. An accumulation of swimming bacteria near solid boundaries has been observed in similar experiments. Our results confirm that collisions with the surface play an important role and hydrodynamic interactions alone cannot explain the steady-state accumulation of cells near the channel walls. Furthermore, we monitored the number growth of cells in the microchannel under medium rich conditions. We observed that, after a lag time, initially isolated cells at the surface started to grow by division into colonies of increasing size, while coexisting with a comparable smaller number of swimming cells. After 5:50 hours, we observed a sudden jump in the number of swimming cells, which was accompanied by a breakup of bigger clusters on the surface. After approximately 30 minutes where planktonic cells dominated in the microchannel, individual swimming cells reattached to the surface. We interpret this process as an emigration and recolonization event. A number of complementary experiments were performed to investigate the influence of collective effects or a depletion of the growth medium on the transition. Similar to earlier observations on another bacterium from the same family we found that the release of cells to the swimming phase is most likely the result of an individual adaption process, where syntheses of proteins for flagellar motility are upregulated after a number of division cycles at the surface. N2 - Bakterien sind einzellige Mikroorganismen, die sich in flüssigem Medium mit Hilfe von rotierenden Flagellen, länglichen Fasern aus Proteinen, schwimmend fortbewegen. In Gegenwart einer Grenzfläche und unter günstigen Umweltbedingungen siedeln sich Bakterien an der Oberfläche an und gehen in eine sesshafte Wachstumsphase über. Die Wachstumsphase an der Oberfläche ist gekennzeichnet durch das Absondern von klebrigen, nährstoffreichen extrazellulären Substanzen, welche die Verbindung der Bakterien untereinander und mit der Oberfläche verstärken. Die entstehenden Aggregate aus extrazellulärer Matrix und Bakterien werden als Biofilm bezeichnet. In der vorliegenden Arbeit untersuchten wir ein Bodenbakterium, Pseudomonas putida (P. putida), welches in wässriger Umgebung an festen Oberflächen Biofilme ausbildet. Wir benutzten photolithographisch hergestellte Mikrokanäle und Hochgeschwindigkeits-Videomikroskopie um die Bewegung schwimmender Zellen in verschiedenen Abständen zu einer Glasoberfläche aufzunehmen. Zusätzlich wurden Daten über das parallel stattfindende Wachstum der sesshaften Zellen an der Oberfläche aufgezeichnet. Die Analyse von Trajektorien frei schwimmender Zellen zeigte, dass sich Liniensegmente, entlang derer sich die Zellen in eine konstante Richtung bewegen, mit scharfen Kehrtwendungen mit einem Winkel von 180 Grad abwechseln. Dabei änderte sich die Schwimmgeschwindigket von einem zum nächsten Segment im Mittel um einen Faktor von 2. Unsere experimentellen Daten waren die Grundlage für ein mathematisches Modell zur Beschreibung der Zellbewegung mit alternierender Geschwindigkeit. Die analytische Lösung des Modells zeigt elegant, dass eine Population von Bakterien, welche zwischen zwei Geschwindigkeiten wechseln, signifikant schneller expandiert als eine Referenzpopulation mit Bakterien konstanter Schwimmgeschwindkeit. Im Vergleich zu frei schwimmenden Bakterien beobachteten wir in der Nähe der Oberfläche eine um 15% erhöhte Schwimmgeschwindigkeit der Zellen und eine um 90 % erhöhte Winkel-geschwindigkeit. Außerdem wurde eine signifikant höhere Zelldichte in der Nähe der Grenzfläche gemessen. Während sich der Anstieg in der Winkelgeschwindigkeit durch ein Drehmoment erklären lässt, welches in Oberflächennähe auf den rotierenden Zellkörper und die rotierenden Flagellen wirkt, kann die Beschleunigung und Akkumulation der Zellen bei dem beobachteten Abstand nicht durch existierende Theorien erklärt werden. Unsere Ergebnisse lassen vermuten, dass neben hydrodynamischen Effekten auch Kollisionen mit der Oberfläche eine wichtige Rolle spielen und sich die Rotationsgeschwindigkeit der Flagellenmotoren in der Nähe einer festen Oberfläche grundsätzlich verändert. Unsere Experimente zum Zellwachstum an Oberflächen zeigten, dass sich etwa sechs Stunden nach Beginn des Experiments größere Kolonien an der Kanaloberfläche auflösen und Zellen für ca. 30 Minuten zurück in die schwimmende Phase wechseln. Ergebnisse von mehreren Vergleichsexperimenten deuten darauf hin, dass dieser Übergang nach einer festen Anzahl von Zellteilungen an der Oberfläche erfolgt und nicht durch den Verbrauch des Wachstumsmediums bedingt wird. KW - Pseudomonas putida KW - Motilität KW - Flagellenbewegung KW - Random-Walk-Theorie KW - Schwimmende Mikroorganismen KW - pseudomonas putida KW - motility KW - flagellar filaments KW - random walk KW - cell tracking Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70313 ER -