TY - JOUR A1 - Zhang, Heshou A1 - Yan, Huirong A1 - Richter, Philipp T1 - The influence of atomic alignment on absorption and emission spectroscopy JF - Monthly notices of the Royal Astronomical Society N2 - Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in our Universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionization fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of Photodissociation regions in rho Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability. KW - magnetic fields KW - submillimetre: ISM KW - ultraviolet: ISM KW - ISM: abundances KW - ISM: lines and bands KW - techniques: spectroscopic Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty1594 SN - 0035-8711 SN - 1365-2966 VL - 479 IS - 3 SP - 3923 EP - 3935 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bouma, Sietske Jeltje Deirdre A1 - Richter, Philipp A1 - Fechner, Cora T1 - A population of high-velocity absorption-line systems residing in the Local Group JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We investigated the ionisation conditions and distances of Galactic high-velocity clouds (HVCs) in the Galactic halo and beyond in the direction of the Local Group (LG) barycentre and anti-barycentre, by studying spectral data of 29 extragalactic background sources obtained with the Cosmic Origins Spectropgraph (COS) installed on the Hubble Space Telescope (HST). Methods. We model column-densities of low, intermediate, and high ions such as Si ii, C ii, Si iii, Si vi, and C iv, and use these data to construct a set of Cloudy ionisation models. Results. In total, we found 69 high-velocity absorption components along the 29 lines of sight. The components in the direction of the LG barycentre span the entire range of studied velocities, 100 less than or similar to vertical bar nu(LSR)vertical bar less than or similar to 400 km s(-1), while those in the anti-barycentre sample have velocities up to about 300 km s(-1). For 49 components, we infer the gas densities. In the direction of the LG barycentre, the gas densities exhibit a wide range from log nH = -3.96 to -2.55, while in the anti-barycentre direction the densities are systematically higher, log nH > -3.25. The barycentre absorbers can be split into two groups based on their density: a high-density group with log nH > -3.54, which can be affected by the Milky Way radiation field, and a low-density group (log nH <= -3.54). The latter has very low thermal pressures of P/k < 7.3 Kcm(-3). Conclusions. Our study shows that part of the absorbers in the LG barycentre direction trace gas at very low gas densities and thermal pressures. These properties indicate that the absorbers are located beyond the virial radius of the Milky Way. Our study also confirms results from earlier, single-sightline studies, suggesting the presence of a metal-enriched intragroup medium filling the LG near its barycentre. KW - Galaxy: halo KW - Galaxy: structure KW - Galaxy: evolution KW - ISM: kinematics and dynamics KW - techniques: spectroscopic KW - ultraviolet: ISM Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935078 SN - 1432-0746 VL - 627 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Finley, Hayley A1 - Bouche, Nicolas A1 - Contini, Thierry A1 - Epinat, Benoit A1 - Bacon, Roland A1 - Brinchmann, Jarle A1 - Cantalupo, Sebastiano A1 - Erroz-Ferrer, Santiago A1 - Marino, Aella Anna A1 - Maseda, Michael A1 - Richard, Johan A1 - Schroetter, Ilane A1 - Verhamme, Anne A1 - Weilbacher, Peter Michael A1 - Wendt, Martin A1 - Wisotzki, Lutz T1 - Galactic winds with MUSE: A direct detection of Fe II* emission from a z=1.29 galaxy JF - Astronomy and astrophysics : an international weekly journal N2 - Emission signatures from galactic winds provide an opportunity to directly map the outflowing gas, but this is traditionally challenging because of the low surface brightness. Using very deep observations (27 h) of the Hubble Deep Field South with the Multi Unit Spectroscopic Explorer (MUSE) instrument, we identify signatures of an outflow in both emission and absorption from a spatially resolved galaxy at z = 1.29 with a stellar mass M-star = 8 x 10(9) M-circle dot, star formation rate SFR = 77(-25)(+40) M-circle dot yr(-1), and star formation rate surface brightness Sigma(SFR) = 1.6 M-circle dot kpc(-2) within the [OII] lambda lambda 3727, 3729 half-light radius R-1/2, ([OII]) = 2.76 +/- 0.17 kpc. From a component of the strong resonant Mg II and Fe II absorptions at -350 km s(-1), we infer a mass outflow rate that is comparable to the star formation rate. We detect non-resonant Fe II* emission, at lambda 2365, lambda 2396, lambda 2612, and lambda 2626, at 1.2-2.4-1.5-2.7 x 10-(18) erg s(-1) cm(-2) respectively. The flux ratios are consistent with the expectations for optically thick gas. By combining the four non-resonant Fe II* emission lines, we spatially map the Fe II* emission from an individual galaxy for the first time. The Fe II* emission has an elliptical morphology that is roughly aligned with the galaxy minor kinematic axis, and its integrated half-light radius, R-1/2, (Fe II*) = 4.1 +/- 0.4 kpc, is 70% larger than the stellar continuum (R-1/2,(star) similar or equal to 2.34 +/- 0.17) or the [O II] nebular line. Moreover, the Fe II* emission shows a blue wing extending up to -400 km s(-1), which is more pronounced along the galaxy minor kinematic axis and reveals a C-shaped pattern in a p - v diagram along that axis. These features are consistent with a bi-conical outflow. KW - galaxies: evolution KW - galaxies: formation KW - galaxies: starburst KW - galaxies: ISM KW - ISM: jets and outflows KW - ultraviolet: ISM Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730428 SN - 1432-0746 VL - 605 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Fox, Andrew J. A1 - Richter, Philipp A1 - Wakker, Bart P. A1 - Lehner, Nicolas A1 - Howk, J. Christopher A1 - Ben Bekhti, Nadya A1 - Bland-Hawthorn, Joss A1 - Lucas, Stephen T1 - The COS/UVES absorption survey of the magellanic stream - I. One-tenth solar abundances along the body of the stream JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The Magellanic Stream (MS) is a massive and extended tail of multi-phase gas stripped out of the Magellanic Clouds and interacting with the Galactic halo. In this first paper of an ongoing program to study the Stream in absorption, we present a chemical abundance analysis based on HST/COS and VLT/UVES spectra of four active galactic nuclei (RBS 144, NGC 7714, PHL 2525, and HE 0056-3622) lying behind the MS. Two of these sightlines yield good MS metallicity measurements: toward RBS 144 we measure a low MS metallicity of [S/H] = [S II/H I] = -1.13 +/- 0.16 while toward NGC 7714 we measure [O/H] = [O I/H I] = -1.24 +/- 0.20. Taken together with the published MS metallicity toward NGC 7469, these measurements indicate a uniform abundance of approximate to 0.1 solar along the main body of the Stream. This provides strong support to a scenario in which most of the Stream was tidally stripped from the SMC approximate to 1.5-2.5 Gyr ago (a time at which the SMC had a metallicity of approximate to 0.1 solar), as predicted by several N-body simulations. However, in Paper II of this series, we report a much higher metallicity (S/H = 0.5 solar) in the inner Stream toward Fairall 9, a direction sampling a filament of the MS that Nidever et al. claim can be traced kinematically to the Large Magellanic Cloud, not the Small Magellanic Cloud. This shows that the bifurcation of the Stream is evident in its metal enrichment, as well as its spatial extent and kinematics. Finally we measure a similar low metallicity [O/H] = [O I/H I] = -1.03 +/- 0.18 in the v(LSR) = 150 km s(-1) cloud toward HE 0056-3622, which belongs to a population of anomalous velocity clouds near the south Galactic pole. This suggests these clouds are associated with the Stream or more distant structures (possibly the Sculptor Group, which lies in this direction at the same velocity), rather than tracing foreground Galactic material. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - ultraviolet: ISM Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/772/2/110 SN - 0004-637X VL - 772 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Richter, Philipp A1 - Nuza, S. E. A1 - Fox, Andrew J. A1 - Wakker, Bart P. A1 - Lehner, N. A1 - Ben Bekhti, Nadya A1 - Fechner, Cora A1 - Wendt, Martin A1 - Howk, J. Christopher A1 - Muzahid, S. A1 - Ganguly, R. A1 - Charlton, Jane C. T1 - An HST/COS legacy survey of high-velocity ultraviolet absorption in the JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The Milky Way is surrounded by large amounts of diffuse gaseous matter that connects the stellar body of our Galaxy with its large-scale Local Group (LG) environment. Aims. To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extragalactic background sources. The UV data are obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST) and are supplemented by 21 cm radio observations of neutral hydrogen. Methods. Along 270 sightlines we measure metal absorption in the lines of Si II, Si III, C II, and C IV and associated H I 21 cm emission in HVCs in the velocity range vertical bar v(LSR)vertical bar = 100-500 km s(-1). With this unprecedented large HVC sample we were able to improve the statistics on HVC covering fractions, ionization conditions, small-scale structure, CGM mass, and inflow rate. For the first time, we determine robustly the angular two point correlation function of the high-velocity absorbers, systematically analyze antipodal sightlines on the celestial sphere, and compare the HVC absorption characteristics with that of damped Lyman alpha absorbers (DLAs) and constrained cosmological simulations of the LG (CLUES project). KW - Galaxy: halo KW - Galaxy: structure KW - Galaxy: evolution KW - ISM: kinematics and dynamics KW - techniques: spectroscopic KW - ultraviolet: ISM Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201630081 SN - 1432-0746 VL - 607 PB - EDP Sciences CY - Les Ulis ER -