TY - THES A1 - Thielemann-Kühn, Nele T1 - Optically induced ferro- and antiferromagnetic dynamics in the rare-earth metal dysprosium T1 - Optisch induzierte ferro- und antiferromagnetische Dynamik im Seltenerdmetall Dysprosium N2 - Approaching physical limits in speed and size of today's magnetic storage and processing technologies demands new concepts for controlling magnetization and moves researches on optically induced magnetic dynamics. Studies on photoinduced magnetization dynamics and their underlying mechanisms have been primarily performed on ferromagnetic metals. Ferromagnetic dynamics bases on transfer of the conserved angular momentum connected with atomic magnetic moments out of the parallel aligned magnetic system into other degrees of freedom. In this thesis the so far rarely studied response of antiferromagnetic order to ultra-short optical laser pulses in a metal is investigated. The experiments were performed at the FemtoSpex slicing facility at the storage ring BESSY II, an unique source for ultra-short elliptically polarized x-ray pulses. Laser-induced changes of the 4f-magnetic order parameter in ferro- and antiferromagnetic dysprosium (Dy), were studied by x-ray methods, which yield directly comparable quantities. The discovered fundamental differences in the temporal and spatial behavior of ferro- and antiferrmagnetic dynamics are assinged to an additional channel for angular momentum transfer, which reduces the antiferromagnetic order by redistributing angular momentum within the non-parallel aligned magnetic system, and hence conserves the zero net magnetization. It is shown that antiferromagnetic dynamics proceeds considerably faster and more energy-efficient than demagnetization in ferromagnets. By probing antiferromagnetic order in time and space, it is found to be affected along the whole sample depth of an in situ grown 73 nm tick Dy film. Interatomic transfer of angular momentum via fast diffusion of laser-excited 5d electrons is held responsible for the out-most long-ranging effect. Ultrafast ferromagnetic dynamics can be expected to base on the same origin, which however leads to demagnetization only in regions close to interfaces caused by super-diffusive spin transport. Dynamics due to local scattering processes of excited but less mobile electrons, occur in both magnetic alignments only in directly excited regions of the sample and on slower pisosecond timescales. The thesis provides fundamental insights into photoinduced magnetic dynamics by directly comparing ferro- and antiferromagnetic dynamics in the same material and by consideration of the laser-induced magnetic depth profile. N2 - Die Geschwindigkeit und Datendichte in heutigen Technologien zur magnetischen Datenspeicherung und -verarbeitung erreichen allmählich physikalische Grenzen. Neue Konzepte zur Manipulation von Magnetisierung sind deshalb erforderlich, was die Forschung an optisch induzierter Magnetodynamik motiviert. Studien zur magnetischen Dynamik ausgelöst durch Femtosekunden-Laserpulse und die ihr zugrunde liegenden Mechanismen stützen sich vorwiegend auf ferromagnetische Metalle. Die Manipulation ferromagnetischer Ordnung basiert aufgrund physikalischer Erhaltungssätze auf dem Transfer des mit atomaren magnetischen Momenten verknüpften Drehimpulses, in andere Freiheitsgrade wie das Gitter oder räumlich in Bereiche mit anderen magnetischen Eigenschaften. Gegenstand dieser Arbeit ist die bisher weniger umfassend untersuchte Reaktion antiferromagnetischer Ordnung auf optische Anregung. Die hier vorgestellten Experimente wurden an der FemtoSpex Slicing Facility, einer einzigartigen Quelle für ultrakurze elliptisch polarisierte Röntgenpulse am Elektronenspeicherring BESSY II durchgeführt. Im 4f-Metall Dysprosium (Dy), das je nach Temperatur ferro- oder antiferromagnetisch ist, wurden optisch induzierte Änderungen der magnetischen Ordnung mit Röntgenmethoden untersucht, aus denen sich der jeweilige 4f-Ordnungsparameter direkt vergleichbar ableiten lässt. Es wird ein sowohl zeitlich als auch räumlich fundamental unterschiedliches Verhalten der ferro- und antiferromagnetischen Dynamik im Femtosekundenbereich nachgewiesen: Antiferromagnetische Ordnung wird wesentlich schneller und energieeffizienter reduziert als ferromagnetische Ordnung. Zeit- und tiefenaufgelöste Messungen an antiferromagnetischem Dy zeigen, dass dieser Effekt zudem äußerst weitreichend ist und die magnetische Ordnung entlang der gesamten Probentiefe eines 73 nm dicken in situ gewachsenen Dy-Films reduziert. Verantwortlich dafür ist ein hier identifizierter Kanal für Drehimpulstransfer, der es aufgrund der nicht-parallelen Orientierung der atomaren magnetischen Momente in Antiferromagneten erlaubt, die entsprechende Ordnung durch eine Umverteilung des Drehimpulses innerhalb des magnetischen Systems zu reduzieren. Dieser Kanal wird zugänglich durch schnelle Diffusion von laserangeregten 5d-Elektronen, die interatomar Drehimpuls übertragen. Die Experimente deuten darauf hin, dass ultraschnelle ferromagnetische Dynamik ebenfalls stark auf Diffusion mobiler Elektronen basiert. Allerdings sorgt der Effekt hier ausschließlich für Demagnetisierung in grenzflächennahen Bereichen durch Spintransport in magnetisch andersartige Gebiete. Auf längeren Picosekundenzeitskalen wird magnetische Dynamik in der antiferro- und voraussichtlich auch in der ferromagnetischen Phase von Dy durch lokale Streuprozesse angeregter aber weniger beweglicherer Elektronen, zum Beispiel mit Phononen hervorgerufen, allerdings nur in direkt angeregten Teilen der Probe. Die vorliegende Arbeit gibt durch den direkten Vergleich ferro- und antiferromagnetischer Dynamik und der Berücksichtigung des optisch induzierten magnetischen Tiefenprofils Einblicke in die fundamentalen Ursprünge optisch induzierter magnetischer Dynamik. KW - antiferromagnetism KW - ferromagnetism KW - ultrafast phenomena KW - x-ray magnetic circular dichroism (XMCD) KW - x-ray magnetic resonant diffraction (XMRD) KW - rare-earth metals KW - pump-probe experiment KW - optically induced dynamics KW - Antiferromagnetismus KW - Ferromagnetismus KW - ultraschnelle Phänomene KW - magnetischer Zirkulardichroismus KW - magnetische resonante Beugung KW - seltene Erden KW - Anregungs-Abfrage-Experiment KW - optisch induzierte Dynamik Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402994 ER -