TY - THES A1 - Klumpp, Stefan T1 - Movements of molecular motors : diffusion and directed walks N2 - Bewegungen von prozessiven molekularen Motoren des Zytoskeletts sind durch ein Wechselspiel von gerichteter Bewegung entlang von Filamenten und Diffusion in der umgebenden Lösung gekennzeichnet. Diese eigentümlichen Bewegungen werden in der vorliegenden Arbeit untersucht, indem sie als Random Walks auf einem Gitter modelliert werden. Ein weiterer Gegenstand der Untersuchung sind Effekte von Wechselwirkungen zwischen den Motoren auf diese Bewegungen. Im einzelnen werden vier Transportphänomene untersucht: (i) Random Walks von einzelnen Motoren in Kompartimenten verschiedener Geometrien, (ii) stationäre Konzentrationsprofile, die sich in geschlossenen Kompartimenten infolge dieser Bewegungen einstellen, (iii) randinduzierte Phasenübergänge in offenen röhrenartigen Kompartimenten, die an Motorenreservoirs gekoppelt sind, und (iv) der Einfluß von kooperativen Effekten bei der Motor-Filament-Bindung auf die Bewegung. Alle diese Phänomene sind experimentell zugänglich, und mögliche experimentelle Realisierungen werden diskutiert. N2 - Movements of processive cytoskeletal motors are characterized by an interplay between directed motion along filament and diffusion in the surrounding solution. In the present work, these peculiar movements are studied by modeling them as random walks on a lattice. An additional subject of our studies is the effect of motor-motor interactions on these movements. In detail, four transport phenomena are studied: (i) Random walks of single motors in compartments of various geometries, (ii) stationary concentration profiles which build up as a result of these movements in closed compartments, (iii) boundary-induced phase transitions in open tube-like compartments coupled to reservoirs of motors, and (iv) the influence of cooperative effects in motor-filament binding on the movements. All these phenomena are experimentally accessible and possible experimental realizations are discussed. KW - molekulare Motoren KW - aktive Prozesse KW - Diffusion KW - Random Walks KW - Gittermodelle KW - Phasenübergänge KW - Staus KW - kooperative Phänomene KW - molecular motors KW - active processes KW - diffusion KW - random walks KW - lattice models KW - phase transitions KW - traffic jams KW - cooperative phenomena Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000806 ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Metzler, Ralf T1 - How a finite potential barrier decreases the mean first-passage time JF - Journal of statistical mechanics: theory and experiment N2 - We consider the mean first-passage time of a random walker moving in a potential landscape on a finite interval, the starting and end points being at different potentials. From analytical calculations and Monte Carlo simulations we demonstrate that the mean first-passage time for a piecewise linear curve between these two points is minimized by the introduction of a potential barrier. Due to thermal fluctuations, this barrier may be crossed. It turns out that the corresponding expense for this activation is less severe than the gain from an increased slope towards the end point. In particular, the resulting mean first-passage time is shorter than for a linear potential drop between the two points. KW - diffusion Y1 - 2012 U6 - https://doi.org/10.1088/1742-5468/2012/03/L03001 SN - 1742-5468 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Magdziarz, Marcin A1 - Metzler, Ralf A1 - Szczotka, Wladyslaw A1 - Zebrowski, Piotr T1 - Correlated continuous-time random walks-scaling limits and Langevin picture JF - Journal of statistical mechanics: theory and experiment N2 - In this paper we analyze correlated continuous-time random walks introduced recently by Tejedor and Metzler (2010 J. Phys. A: Math. Theor. 43 082002). We obtain the Langevin equations associated with this process and the corresponding scaling limits of their solutions. We prove that the limit processes are self-similar and display anomalous dynamics. Moreover, we extend the model to include external forces. Our results are confirmed by Monte Carlo simulations. KW - stochastic processes (theory) KW - diffusion Y1 - 2012 U6 - https://doi.org/10.1088/1742-5468/2012/04/P04010 SN - 1742-5468 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Lenz, F. A1 - Klages, Rainer T1 - Normal and anomalous fluctuation relations for gaussian stochastic dynamics JF - Journal of statistical mechanics: theory and experiment N2 - We study transient work fluctuation relations (FRs) for Gaussian stochastic systems generating anomalous diffusion. For this purpose we use a Langevin approach by employing two different types of additive noise: (i) internal noise where the fluctuation dissipation relation of the second kind (FDR II) holds, and (ii) external noise without FDR II. For internal noise we demonstrate that the existence of FDR II implies the existence of the fluctuation dissipation relation of the first kind (FDR I), which in turn leads to conventional (normal) forms of transient work FRs. For systems driven by external noise we obtain violations of normal FRs, which we call anomalous FRs. We derive them in the long-time limit and demonstrate the existence of logarithmic factors in FRs for intermediate times. We also outline possible experimental verifications. KW - stochastic particle dynamics (theory) KW - fluctuations (theory) KW - stochastic processes (theory) KW - diffusion Y1 - 2012 U6 - https://doi.org/10.1088/1742-5468/2012/11/L11001 SN - 1742-5468 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Mulansky, Mario T1 - Chaotic diffusion in nonlinear Hamiltonian systems T1 - Chaotische Diffusion in nichtlinearen Hamiltonschen Systemen N2 - This work investigates diffusion in nonlinear Hamiltonian systems. The diffusion, more precisely subdiffusion, in such systems is induced by the intrinsic chaotic behavior of trajectories and thus is called chaotic diffusion''. Its properties are studied on the example of one- or two-dimensional lattices of harmonic or nonlinear oscillators with nearest neighbor couplings. The fundamental observation is the spreading of energy for localized initial conditions. Methods of quantifying this spreading behavior are presented, including a new quantity called excitation time. This new quantity allows for a more precise analysis of the spreading than traditional methods. Furthermore, the nonlinear diffusion equation is introduced as a phenomenologic description of the spreading process and a number of predictions on the density dependence of the spreading are drawn from this equation. Two mathematical techniques for analyzing nonlinear Hamiltonian systems are introduced. The first one is based on a scaling analysis of the Hamiltonian equations and the results are related to similar scaling properties of the NDE. From this relation, exact spreading predictions are deduced. Secondly, the microscopic dynamics at the edge of spreading states are thoroughly analyzed, which again suggests a scaling behavior that can be related to the NDE. Such a microscopic treatment of chaotically spreading states in nonlinear Hamiltonian systems has not been done before and the results present a new technique of connecting microscopic dynamics with macroscopic descriptions like the nonlinear diffusion equation. All theoretical results are supported by heavy numerical simulations, partly obtained on one of Europe's fastest supercomputers located in Bologna, Italy. In the end, the highly interesting case of harmonic oscillators with random frequencies and nonlinear coupling is studied, which resembles to some extent the famous Discrete Anderson Nonlinear Schroedinger Equation. For this model, a deviation from the widely believed power-law spreading is observed in numerical experiments. Some ideas on a theoretical explanation for this deviation are presented, but a conclusive theory could not be found due to the complicated phase space structure in this case. Nevertheless, it is hoped that the techniques and results presented in this work will help to eventually understand this controversely discussed case as well. N2 - Diese Arbeit beschäftigt sich mit dem Phänomen der Diffusion in nichtlinearen Systemen. Unter Diffusion versteht man normalerweise die zufallsmä\ss ige Bewegung von Partikeln durch den stochastischen Einfluss einer thermodynamisch beschreibbaren Umgebung. Dieser Prozess ist mathematisch beschrieben durch die Diffusionsgleichung. In dieser Arbeit werden jedoch abgeschlossene Systeme ohne Einfluss der Umgebung betrachtet. Dennoch wird eine Art von Diffusion, üblicherweise bezeichnet als Subdiffusion, beobachtet. Die Ursache dafür liegt im chaotischen Verhalten des Systems. Vereinfacht gesagt, erzeugt das Chaos eine intrinsische Pseudo-Zufälligkeit, die zu einem gewissen Grad mit dem Einfluss einer thermodynamischen Umgebung vergleichbar ist und somit auch diffusives Verhalten provoziert. Zur quantitativen Beschreibung dieses subdiffusiven Prozesses wird eine Verallgemeinerung der Diffusionsgleichung herangezogen, die Nichtlineare Diffusionsgleichung. Desweiteren wird die mikroskopische Dynamik des Systems mit analytischen Methoden untersucht, und Schlussfolgerungen für den makroskopischen Diffusionsprozess abgeleitet. Die Technik der Verbindung von mikroskopischer Dynamik und makroskopischen Beobachtungen, die in dieser Arbeit entwickelt wird und detailliert beschrieben ist, führt zu einem tieferen Verständnis von hochdimensionalen chaotischen Systemen. Die mit mathematischen Mitteln abgeleiteten Ergebnisse sind darüber hinaus durch ausführliche Simulationen verifiziert, welche teilweise auf einem der leistungsfähigsten Supercomputer Europas durchgeführt wurden, dem sp6 in Bologna, Italien. Desweiteren können die in dieser Arbeit vorgestellten Erkenntnisse und Techniken mit Sicherheit auch in anderen Fällen bei der Untersuchung chaotischer Systeme Anwendung finden. KW - Chaos KW - Diffusion KW - Thermalisierung KW - Energieausbreitung KW - chaos KW - diffusion KW - thermalization KW - energy spreading Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63180 ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Space-fractional Fokker-Planck equation and optimization of random search processes in the presence of an external bias JF - Journal of statistical mechanics: theory and experiment N2 - Based on the space-fractional Fokker-Planck equation with a delta-sink term, we study the efficiency of random search processes based on Levy flights with power-law distributed jump lengths in the presence of an external drift, for instance, an underwater current, an airflow, or simply the preference of the searcher based on prior experience. While Levy flights turn out to be efficient search processes when the target is upstream relative to the starting point, in the downstream scenario, regular Brownian motion turns out to be advantageous. This is caused by the occurrence of leapovers of Levy flights, due to which Levy flights typically overshoot a point or small interval. Studying the solution of the fractional Fokker-Planck equation, we establish criteria when the combination of the external stream and the initial distance between the starting point and the target favours Levy flights over the regular Brownian search. Contrary to the common belief that Levy flights with a Levy index alpha = 1 (i.e. Cauchy flights) are optimal for sparse targets, we find that the optimal value for alpha may range in the entire interval (1, 2) and explicitly include Brownian motion as the most efficient search strategy overall. KW - driven diffusive systems (theory) KW - fluctuations (theory) KW - stochastic processes (theory) KW - diffusion Y1 - 2014 U6 - https://doi.org/10.1088/1742-5468/2014/11/P11031 SN - 1742-5468 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity JF - Journal of statistical mechanics: theory and experiment N2 - We study generalized anomalous diffusion processes whose diffusion coefficient D(x, t) similar to D-0x(alpha)t(beta) depends on both the position x of the test particle and the process time t. This process thus combines the features of scaled Brownian motion and heterogeneous diffusion parent processes. We compute the ensemble and time averaged mean squared displacements of this generalized diffusion process. The scaling exponent of the ensemble averaged mean squared displacement is shown to be the product of the critical exponents of the parent processes, and describes both subdiffusive and superdiffusive systems. We quantify the amplitude fluctuations of the time averaged mean squared displacement as function of the length of the time series and the lag time. In particular, we observe a weak ergodicity breaking of this generalized diffusion process: even in the long time limit the ensemble and time averaged mean squared displacements are strictly disparate. When we start to observe this process some time after its initiation we observe distinct features of ageing. We derive a universal ageing factor for the time averaged mean squared displacement containing all information on the ageing time and the measurement time. External confinement is shown to alter the magnitudes and statistics of the ensemble and time averaged mean squared displacements. KW - diffusion Y1 - 2015 U6 - https://doi.org/10.1088/1742-5468/2015/05/P05010 SN - 1742-5468 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Shin, Jaeoh A1 - Cherstvy, Andrey G. A1 - Kim, Won Kyu A1 - Metzler, Ralf T1 - Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles JF - New journal of physics : the open-access journal for physics N2 - We study the dynamics of polymer chains in a bath of self-propelled particles (SPP) by extensive Langevin dynamics simulations in a two-dimensional model system. Specifically, we analyse the polymer looping properties versus the SPP activity and investigate how the presence of the active particles alters the chain conformational statistics. We find that SPPs tend to extend flexible polymer chains, while they rather compactify stiffer semiflexible polymers, in agreement with previous results. Here we show that higher activities of SPPs yield a higher effective temperature of the bath and thus facilitate the looping kinetics of a passive polymer chain. We explicitly compute the looping probability and looping time in a wide range of the model parameters. We also analyse the motion of a monomeric tracer particle and the polymer's centre of mass in the presence of the active particles in terms of the time averaged mean squared displacement, revealing a giant diffusivity enhancement for the polymer chain via SPP pooling. Our results are applicable to rationalising the dimensions and looping kinetics of biopolymers at constantly fluctuating and often actively driven conditions inside biological cells or in suspensions of active colloidal particles or bacteria cells. KW - diffusion KW - active transport KW - polymers Y1 - 2015 U6 - https://doi.org/10.1088/1367-2630/17/11/113008 SN - 1367-2630 VL - 17 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Chen, Xuhui A1 - Pohl, Martin A1 - Böttcher, Markus T1 - Particle diffusion and localized acceleration in inhomogeneous AGN jets - I. Steady-state spectra JF - Monthly notices of the Royal Astronomical Society N2 - We study the acceleration, transport, and emission of particles in relativistic jets. Localized stochastic particle acceleration, spatial diffusion, and synchrotron as well as synchrotron self-Compton (SSC) emission are considered in a leptonic model. To account for inhomogeneity, we use a 2D axisymmetric cylindrical geometry for both relativistic electrons and magnetic field. In this first phase of our work, we focus on steady-state spectra that develop from a time-dependent model. We demonstrate that small isolated acceleration region in a much larger emission volume are sufficient to accelerate particles to high energy. Diffusive escape from these small regions provides a natural explanation for the spectral form of the jet emission. The location of the acceleration regions within the jet is found to affect the cooling break of the spectrum in this diffusive model. Diffusion-caused energy-dependent inhomogeneity in the jets predicts that the SSC spectrum is harder than the synchrotron spectrum. There can also be a spectral hardening towards the high-energy section of the synchrotron spectrum, if particle escape is relatively slow. These two spectral hardening effects indicate that the jet inhomogeneity might be a natural explanation for the unexpected hard. gamma-ray spectra observed in some blazars. KW - acceleration of particles KW - diffusion KW - radiation mechanisms: non-thermal KW - galaxies:active KW - galaxies: jets Y1 - 2015 U6 - https://doi.org/10.1093/mnras/stu2438 SN - 0035-8711 SN - 1365-2966 VL - 447 IS - 1 SP - 530 EP - 544 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Beta, Carsten T1 - To turn or not to turn? JF - NEW JOURNAL OF PHYSICS N2 - Bacteria typically swim in straight runs, interruped by sudden turning events. In particular, some species are limited to a reversal in the swimming direction as the only turning maneuver at their disposal. In a recent article, Grossmann et al (2016 New J. Phys. 18 043009) introduce a theoretical framework to analyze the diffusive properties of active particles following this type of run-and-reverse pattern. Based on a stochastic clock model to mimic the regulatory pathway that triggers reversal events, they show that a run-and-reverse swimmer can optimize its diffusive spreading by tuning the reversal rate according to the level of rotational noise. With their approach, they open up promising new perspectives of how to incorporate the dynamics of intracellular signaling into coarse-grained active particle descriptions. KW - bacterial swimming KW - random walks KW - diffusion KW - stochastic models Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/5/051003 SN - 1367-2630 VL - 18 SP - 1 EP - 17 PB - IOP Publ. Ltd. CY - Bristol ER -