TY - THES A1 - Mulansky, Mario T1 - Chaotic diffusion in nonlinear Hamiltonian systems T1 - Chaotische Diffusion in nichtlinearen Hamiltonschen Systemen N2 - This work investigates diffusion in nonlinear Hamiltonian systems. The diffusion, more precisely subdiffusion, in such systems is induced by the intrinsic chaotic behavior of trajectories and thus is called chaotic diffusion''. Its properties are studied on the example of one- or two-dimensional lattices of harmonic or nonlinear oscillators with nearest neighbor couplings. The fundamental observation is the spreading of energy for localized initial conditions. Methods of quantifying this spreading behavior are presented, including a new quantity called excitation time. This new quantity allows for a more precise analysis of the spreading than traditional methods. Furthermore, the nonlinear diffusion equation is introduced as a phenomenologic description of the spreading process and a number of predictions on the density dependence of the spreading are drawn from this equation. Two mathematical techniques for analyzing nonlinear Hamiltonian systems are introduced. The first one is based on a scaling analysis of the Hamiltonian equations and the results are related to similar scaling properties of the NDE. From this relation, exact spreading predictions are deduced. Secondly, the microscopic dynamics at the edge of spreading states are thoroughly analyzed, which again suggests a scaling behavior that can be related to the NDE. Such a microscopic treatment of chaotically spreading states in nonlinear Hamiltonian systems has not been done before and the results present a new technique of connecting microscopic dynamics with macroscopic descriptions like the nonlinear diffusion equation. All theoretical results are supported by heavy numerical simulations, partly obtained on one of Europe's fastest supercomputers located in Bologna, Italy. In the end, the highly interesting case of harmonic oscillators with random frequencies and nonlinear coupling is studied, which resembles to some extent the famous Discrete Anderson Nonlinear Schroedinger Equation. For this model, a deviation from the widely believed power-law spreading is observed in numerical experiments. Some ideas on a theoretical explanation for this deviation are presented, but a conclusive theory could not be found due to the complicated phase space structure in this case. Nevertheless, it is hoped that the techniques and results presented in this work will help to eventually understand this controversely discussed case as well. N2 - Diese Arbeit beschäftigt sich mit dem Phänomen der Diffusion in nichtlinearen Systemen. Unter Diffusion versteht man normalerweise die zufallsmä\ss ige Bewegung von Partikeln durch den stochastischen Einfluss einer thermodynamisch beschreibbaren Umgebung. Dieser Prozess ist mathematisch beschrieben durch die Diffusionsgleichung. In dieser Arbeit werden jedoch abgeschlossene Systeme ohne Einfluss der Umgebung betrachtet. Dennoch wird eine Art von Diffusion, üblicherweise bezeichnet als Subdiffusion, beobachtet. Die Ursache dafür liegt im chaotischen Verhalten des Systems. Vereinfacht gesagt, erzeugt das Chaos eine intrinsische Pseudo-Zufälligkeit, die zu einem gewissen Grad mit dem Einfluss einer thermodynamischen Umgebung vergleichbar ist und somit auch diffusives Verhalten provoziert. Zur quantitativen Beschreibung dieses subdiffusiven Prozesses wird eine Verallgemeinerung der Diffusionsgleichung herangezogen, die Nichtlineare Diffusionsgleichung. Desweiteren wird die mikroskopische Dynamik des Systems mit analytischen Methoden untersucht, und Schlussfolgerungen für den makroskopischen Diffusionsprozess abgeleitet. Die Technik der Verbindung von mikroskopischer Dynamik und makroskopischen Beobachtungen, die in dieser Arbeit entwickelt wird und detailliert beschrieben ist, führt zu einem tieferen Verständnis von hochdimensionalen chaotischen Systemen. Die mit mathematischen Mitteln abgeleiteten Ergebnisse sind darüber hinaus durch ausführliche Simulationen verifiziert, welche teilweise auf einem der leistungsfähigsten Supercomputer Europas durchgeführt wurden, dem sp6 in Bologna, Italien. Desweiteren können die in dieser Arbeit vorgestellten Erkenntnisse und Techniken mit Sicherheit auch in anderen Fällen bei der Untersuchung chaotischer Systeme Anwendung finden. KW - Chaos KW - Diffusion KW - Thermalisierung KW - Energieausbreitung KW - chaos KW - diffusion KW - thermalization KW - energy spreading Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63180 ER - TY - THES A1 - Klumpp, Stefan T1 - Movements of molecular motors : diffusion and directed walks N2 - Bewegungen von prozessiven molekularen Motoren des Zytoskeletts sind durch ein Wechselspiel von gerichteter Bewegung entlang von Filamenten und Diffusion in der umgebenden Lösung gekennzeichnet. Diese eigentümlichen Bewegungen werden in der vorliegenden Arbeit untersucht, indem sie als Random Walks auf einem Gitter modelliert werden. Ein weiterer Gegenstand der Untersuchung sind Effekte von Wechselwirkungen zwischen den Motoren auf diese Bewegungen. Im einzelnen werden vier Transportphänomene untersucht: (i) Random Walks von einzelnen Motoren in Kompartimenten verschiedener Geometrien, (ii) stationäre Konzentrationsprofile, die sich in geschlossenen Kompartimenten infolge dieser Bewegungen einstellen, (iii) randinduzierte Phasenübergänge in offenen röhrenartigen Kompartimenten, die an Motorenreservoirs gekoppelt sind, und (iv) der Einfluß von kooperativen Effekten bei der Motor-Filament-Bindung auf die Bewegung. Alle diese Phänomene sind experimentell zugänglich, und mögliche experimentelle Realisierungen werden diskutiert. N2 - Movements of processive cytoskeletal motors are characterized by an interplay between directed motion along filament and diffusion in the surrounding solution. In the present work, these peculiar movements are studied by modeling them as random walks on a lattice. An additional subject of our studies is the effect of motor-motor interactions on these movements. In detail, four transport phenomena are studied: (i) Random walks of single motors in compartments of various geometries, (ii) stationary concentration profiles which build up as a result of these movements in closed compartments, (iii) boundary-induced phase transitions in open tube-like compartments coupled to reservoirs of motors, and (iv) the influence of cooperative effects in motor-filament binding on the movements. All these phenomena are experimentally accessible and possible experimental realizations are discussed. KW - molekulare Motoren KW - aktive Prozesse KW - Diffusion KW - Random Walks KW - Gittermodelle KW - Phasenübergänge KW - Staus KW - kooperative Phänomene KW - molecular motors KW - active processes KW - diffusion KW - random walks KW - lattice models KW - phase transitions KW - traffic jams KW - cooperative phenomena Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000806 ER - TY - THES A1 - Sposini, Vittoria T1 - The random diffusivity approach for diffusion in heterogeneous systems N2 - The two hallmark features of Brownian motion are the linear growth < x2(t)> = 2Ddt of the mean squared displacement (MSD) with diffusion coefficient D in d spatial dimensions, and the Gaussian distribution of displacements. With the increasing complexity of the studied systems deviations from these two central properties have been unveiled over the years. Recently, a large variety of systems have been reported in which the MSD exhibits the linear growth in time of Brownian (Fickian) transport, however, the distribution of displacements is pronouncedly non-Gaussian (Brownian yet non-Gaussian, BNG). A similar behaviour is also observed for viscoelastic-type motion where an anomalous trend of the MSD, i.e., ~ ta, is combined with a priori unexpected non-Gaussian distributions (anomalous yet non-Gaussian, ANG). This kind of behaviour observed in BNG and ANG diffusions has been related to the presence of heterogeneities in the systems and a common approach has been established to address it, that is, the random diffusivity approach. This dissertation explores extensively the field of random diffusivity models. Starting from a chronological description of all the main approaches used as an attempt of describing BNG and ANG diffusion, different mathematical methodologies are defined for the resolution and study of these models. The processes that are reported in this work can be classified in three subcategories, i) randomly-scaled Gaussian processes, ii) superstatistical models and iii) diffusing diffusivity models, all belonging to the more general class of random diffusivity models. Eventually, the study focuses more on BNG diffusion, which is by now well-established and relatively well-understood. Nevertheless, many examples are discussed for the description of ANG diffusion, in order to highlight the possible scenarios which are known so far for the study of this class of processes. The second part of the dissertation deals with the statistical analysis of random diffusivity processes. A general description based on the concept of moment-generating function is initially provided to obtain standard statistical properties of the models. Then, the discussion moves to the study of the power spectral analysis and the first passage statistics for some particular random diffusivity models. A comparison between the results coming from the random diffusivity approach and the ones for standard Brownian motion is discussed. In this way, a deeper physical understanding of the systems described by random diffusivity models is also outlined. To conclude, a discussion based on the possible origins of the heterogeneity is sketched, with the main goal of inferring which kind of systems can actually be described by the random diffusivity approach. N2 - Die zwei grundlegenden Eigenschaften der Brownschen Molekularbewegung sind das lineare Wachstum < x2(t)> = 2Ddt der mittleren quadratischen Verschiebung (mean squared displacement, MSD) mit dem Diffusionskoeffizienten D in Dimension d und die Gauß Verteilung der räumlichen Verschiebung. Durch die zunehmende Komplexität der untersuchten Systeme wurden in den letzten Jahren Abweichungen von diesen zwei grundlegenden Eigenschaften gefunden. Hierbei, wurde über eine große Anzahl von Systemen berichtet, in welchen die MSD das lineare Wachstum der Brownschen Bewegung (Ficksches Gesetzt) zeigt, jedoch die Verteilung der Verschiebung nicht einer Gaußverteilung folgt (Brownian yet non-Gaussian, BNG). Auch in viskoelastischen Systemen Bewegung wurde ein analoges Verhalten beobachtet. Hier ist ein anomales Verhalten des MSD, ~ ta, in Verbindung mit einer a priori unerwarteten nicht gaußchen Verteilung (anomalous yet non-Gaussian, ANG). Dieses Verhalten, welches sowohl in BNG- als auch in ANG-Diffusion beobachtet wird, ist auf eine Heterogenität in den Systemen zurückzuführen. Um diese Systeme zu beschreiben, wurde ein einheitlicher Ansatz, basierend auf den Konzept der zufälligen Diffusivität, entwickelt. Die vorliegende Dissertation widmet sich ausführlich Modellen mit zufälligen Diffusivität. Ausgehend von einem chronologischen Überblick der grundlegenden Ansätze der Beschreibung der BNG- und ANG-Diffusion werden mathematische Methoden entwickelt, um die verschiedenen Modelle zu untersuchen. Die in dieser Arbeit diskutierten Prozesse können in drei Kategorien unterteil werden: i) randomly-scaled Gaussian processes, ii) superstatistical models und iii) diffusing diffusivity models, welche alle zu den allgemeinen Modellen mit zufälligen Diffusivität gehören. Der Hauptteil dieser Arbeit ist die Untersuchung auf die BNG Diffusion, welche inzwischen relativ gut verstanden ist. Dennoch werden auch viele Beispiele für die Beschreibung von ANG-Diffusion diskutiert, um die Möglichkeiten der Analyse solcher Prozesse aufzuzeigen. Der zweite Teil der Dissertation widmet sich der statistischen Analyse von Modellen mit zufälligen Diffusivität. Eine allgemeine Beschreibung basierend auf dem Konzept der momenterzeugenden Funktion wurde zuerst herangezogen, um grundsätzliche statistische Eigenschaften der Modelle zu erhalten. Anschließend konzentriert sich die Diskussion auf die Analyse der spektralen Leistungsdichte und der first passage Statistik für einige spezielle Modelle mit zufälligen Diffusivität. Diese Ergebnisse werden mit jenen der normalen Brownschen Molekularbewegung verglichen. Dadurch wird ein tiefergehendes physikalisches Verständnis über die Systeme erlangt, welche durch ein Modell mit zufälligen Diffusivität beschrieben werden. Abschließend, zeigt eine Diskussion mögliche Ursachen für die Heterogenität auf, mit dem Ziel darzustellen, welche Arten von Systemen durch den Zufalls-Diffusivitäts-Ansatz beschrieben werden können. N2 - Las dos características distintivas del movimiento Browniano son el crecimiento lineal < x2(t)> = 2Ddt del desplazamiento cuadrático medio (mean squared displacement}, MSD) con el coeficiente de difusión D en dimensiones espaciales d, y la distribución Gaussiana de los desplazamientos. Con los continuos avances en tecnologías experimentales y potencia de cálculo, se logra estudiar con mayor detalle sistemas cada vez más complejos y algunos sistemas revelan desviaciones de estas dos propiedades centrales. En los últimos años se ha observado una gran variedad de sistemas en los que el MSD presenta un crecimiento lineal en el tiempo (típico del transporte Browniano), no obstante, la distribución de los desplazamientos es pronunciadamente no Gaussiana (Brownian yet non-Gaussian diffusion}, BNG). Un comportamiento similar se observa asimismo en el caso del movimiento de tipo viscoelástico, en el que se combina una tendencia anómala del MSD, es decir, ~ ta, con a, con distribuciones inesperadamente no Gaussianas (Anomalous yet non-Gaussian diffusion, ANG). Este tipo de comportamiento observado en las difusiones BNG y ANG se ha relacionado con la presencia de heterogeneidades en los sistemas y se ha establecido un enfoque común para abordarlo: el enfoque de difusividad aleatoria. En la primera parte de esta disertación se explora extensamente el área de los modelos de difusividad aleatoria. A través de una descripción cronológica de los principales enfoques utilizados para caracterizar las difusiones BNG y ANG, se definen diferentes metodologías matemáticas para la resolución y el estudio de estos modelos. Los procesos expuestos en este trabajo, pertenecientes a la clase más general de modelos de difusividad aleatoria, pueden clasificarse en tres subcategorías: i) randomly-scaled Gaussian processes, ii) superstatistical models y iii) diffusing diffusivity models. Fundamentalmente el enfoque de este trabajo se centra en la difusión BNG, bien establecida y ampliamente estudiada en los últimos años. No obstante, múltiples ejemplos son examinados para la descripción de la difusión ANG, a fin de remarcar los diferentes modelos de estudio disponibles hasta el momento. En la segunda parte de la disertación se desarolla el análisis estadístico de los procesos de difusividad aleatoria. Inicialmente se expone una descripción general basada en el concepto de la función generadora de momentos para obtener las propiedades estadísticas estándar de los modelos. A continuación, la discusión aborda el estudio de la densidad espectral de potencia y la estadística del tiempo de primer paso para algunos modelos de difusividad aleatoria. Adicionalmente, los resultados del método de difusividad aleatoria se comparan junto a los de movimiento browniano estándar. Como resultado, se obtiene una mayor comprensión física de los sistemas descritos por los modelos de difusividad aleatoria. Para concluir, se presenta una discusión acerca de los posibles orígenes de la heterogeneidad, con el objetivo principal de inferir qué tipo de sistemas pueden describirse apropiadamente según el enfoque de la difusividad aleatoria. KW - diffusion KW - non-gaussianity KW - random diffusivity KW - power spectral analysis KW - first passage KW - Diffusion KW - zufälligen Diffusivität KW - spektrale Leistungsdichte KW - first passage KW - Heterogenität Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-487808 ER - TY - THES A1 - Grätz, Fabio M. T1 - Nonlinear diffusion in granular gases and dense planetary rings N2 - Small moonlets or moons embedded in dense planetary rings create S-shaped density modulations called propellers if their masses are smaller than a certain threshold, alternatively they create a circumferential gap in the disk if the embedded body’s mass exceeds this threshold (Spahn and Sremčević, 2000). The gravitational perturber scatters the ring particles, depletes the disk’s density, and, thus, clears a gap, whereas counteracting viscous diffusion of the ring material has the tendency to close the created gap, thereby forming a propeller. Propeller objects were predicted by Spahn and Sremčević (2000) and Sremčević et al. (2002) and were later discovered by the Cassini space probe (Tiscareno et al., 2006, Sremčević et al., 2007, Tiscareno et al., 2008, and Tiscareno et al., 2010). The ring moons Pan and Daphnis are massive enough to maintain the circumferential Encke and Keeler gaps in Saturn’s A ring and were detected by Showalter (1991) and Porco (2005) in Voyager and Cassini images, respectively. In this thesis, a nonlinear axisymmetric diffusion model is developed to describe radial density profiles of circumferential gaps in planetary rings created by embedded moons (Grätz et al., 2018). The model accounts for the gravitational scattering of the ring particles by the embedded moon and for the counteracting viscous diffusion of the ring matter back into the gap. With test particle simulations it is shown that the scattering of the ring particles passing the moon is larger for small impact parameters than estimated by Goldreich and Tremaine (1980). This is especially significant for the modeling of the Keeler gap. The model is applied to the Encke and Keeler gaps with the aim to estimate the shear viscosity of the ring in their vicinities. In addition, the model is used to analyze whether tiny icy moons whose dimensions lie below Cassini’s resolution capabilities would be able to cause the poorly understood gap structure of the C ring and the Cassini Division. One of the most intriguing facets of Saturn’s rings are the extremely sharp edges of the Encke and Keeler gaps: UVIS-scans of their gap edges show that the optical depth drops from order unity to zero over a range of far less than 100 m, a spatial scale comparable to the ring’s vertical extent. This occurs despite the fact that the range over which a moon transfers angular momentum onto the ring material is much larger. Borderies et al. (1982, 1989) have shown that this striking feature is likely related to the local reversal of the usually outward-directed viscous transport of angular momentum in strongly perturbed regions. We have revised the Borderies et al. (1989) model using a granular flow model to define the shear and bulk viscosities, ν and ζ, in order to incorporate the angular momentum flux reversal effect into the axisymmetric diffusion model for circumferential gaps presented in this thesis (Grätz et al., 2019). The sharp Encke and Keeler gap edges are modeled and conclusions regarding the shear and bulk viscosities of the ring are discussed. Finally, we explore the question of whether the radial density profile of the central and outer A ring, recently measured by Tiscareno and Harris (2018) in the highest resolution to date, and in particular, the sharp outer A ring edge can be modeled consistently from the balance of gravitational scattering by several outer moons and the mass and momentum transport. To this aim, the developed model is extended to account for the inward drifts caused by multiple discrete and overlapping resonances with multiple outer satellites and is then used to hydrodynamically simulate the normalized surface mass density profile of the A ring. This section of the thesis is based on studies by Tajeddine et al. (2017a) who recently discussed the common misconception that the 7:6 resonance with Janus alone maintains the outer A ring edge, showing that the combined effort of several resonances with several outer moons is required to confine the A ring as observed by the Cassini spacecraft. KW - celestial mechanics KW - diffusion KW - hydrodynamics KW - planets and satellites: rings KW - scattering Y1 - 2020 ER -