TY - THES A1 - Kurcz, Andreas T1 - Qed in periodischen und absorbierenden Medien T1 - Qed in periodic and lossy media N2 - Das Strahlungsfeld in einem absorbierenden, periodischen Dielektrikum ist kanonisch quantisiert worden. Dabei wurde ein eindimensionales Modell mit punktförmigen Streuern betrachtet, deren Polarisierbarkeit den Kramers-Kronig Relationen gehorcht. Es wurde ein Quantisierungsverfahren nach Knöll, Scheel und Welsch [1] verwendet, das als eine Ergänzung zum mikroskopischen Huttner-Barnett Schema [2] aufgefaßt werden kann und in dem auf der Basis der phänomenologischen Maxwell Gleichungen eine bosonische Rauschpolarisation als die Quelle des Feldes auftritt. Das Problem reduziert sich dabei auf die Bestimmung der klassischenGreens Funktion. Die Kramers-Kronig Relationen der komplexen Polarisierbarkeit der Punktstreuer sichert die korrekte Verknüpfung zwischen Dispersion und Absorption. Der Punktstreuer ist dabei ein idealisiertes Modell, um periodische Hintergrundmedien, denen das Strahlungsfeld ausgesetzt ist, zu beschreiben. Er bedarf jedoch eines Kompromisses, um die entsprechenden Rauschquellen zu konstruieren. Es konnte gezeigt werden, daß der Punktstreuer dasselbe Streuverhalten wie eine dünne Potentialschwelle besitzt und damit die technischen Schwierigkeiten für den Fall eines absorptiven Punktstreuers überwunden werden können. An Hand dieses Beispiels konnte das Quantisierungsschema nach Knöll, Scheel und Welsch auf periodische und absorbierende Strukturen angewendet werden. Es ist bekannt, daß die Bestimmung der Modenstruktur für den Fall der Modenzerlegung des Strahlungsfeldes ein rein klassisches Problem darstellt. Mit Ausnahme des Vakuums ist eine zweckmäßige Modenzerlegung nur dann durchführbar, wenn mit einer reellen Polarisierbarkeit die Absorption vernachlässigt werden kann. Aus den Kramers-Kronig Relationen wird klar, daß solch eine Annahme nur in bestimmten Intervallen des Frequenzspektrums gerechtfertigt werden kann. Es wurde gezeigt, daß auch das quantisierte Strahlungsfeld in Anwesenheit der Punktstreuer in eben solchen Intervallen in Quasimoden entwickelt werden kann, wenn man neue Quasioperatoren als Erzeuger und Vernichter einführt. Die bosonischen Vertauschungsrelationen dieser Operatoren konnten bestätigt werden. Die allgemeine Vertauschungsrelation kanonisch konjugierter Variablen im Sinne der kanonischen Quantisierung kann für das elektrische Feld und das Vektorpotential beibehalten werden. In der Greens Funktion sind sämtliche Informationen über die dispersiven und absorptiven Eigenschaften des Dielektrikums sowie über die räumliche Struktur enthalten. Die wesentlichen Merkmale werden dabei durch den Reflexionskoeffizienten nach Boedecker und Henkel [3] bestimmt, der das Reflexionsverhalten an einem unendlich ausgedehnten Halbraum aus periodisch angeordneten Punktstreuern beschreibt. Mit Hilfe des Transfermatrixformalismus war es möglich einen allgemeinen Zugang zum Reflexionsverhalten zunächst endlicher Strukturen zu erhalten. Die Ausdehnung auf den Halbraum mit Hilfe der Klassifizierung in Untergruppen der Transfermatrizen nach ermöglichte es, den Reflexionskoeffizienten nach Boedecker und Henkel [3] auch geometrisch plausibel zu machen. Ein wesentlicher Aspekt von periodischen Systemen ist die Translationssymmetrie, die im Fall unendlich ausgedehnter, verlustfreier Systeme auf eine ideale Bandstruktur führt. Mit Hilfe der Untergruppenklassifizierung kann im verlustfreien Fall die Geometrie der Anordnung indirekt mit der Bandstruktur verknüpft werden. Es konnte nachgewiesen werden, daß auch der einzelne Punktstreuer immer in einer dieser Untergruppen zu finden ist. Dabei besitzt die Bandstruktur der unendlich periodischen Anordnung dieser Streuer immer eine von der Polarisierbarkeit abhängige Bandkante und eine von der Polarisierbarkeit unabhängige Bandkante. Die Bandstruktur, die mit den verlustbehafteten Feldern einhergeht, ist eine doppelt komplexe. Alternativ zu dieser nur schwer zu interpretierenden Bandstruktur wurden die Feldfluktuationen selektiv nach reellen Frequenzen und Wellenzahlen sondiert. Es zeigt sich, daß Absorption besonders in der Nähe der Bandkanten die Bänder verbreitert. Die Ergebnisse, die mit Hilfe der lokalen Zustandsdichtefunktion gewonnen wurden, konnten dabei bestätigt werden. [1] S. Scheel, L. Knöll and D. G. Welsch, Phys.Rev. A 58, 700 (1998). [2] B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992). [3] G. Boedecker and C. Henkel, OPTICS EXPRESS 11, 1590 (2003). N2 - A canonical scheme based on the phenomenological Maxwell equations in the presence of dielectric matter is used to quantize the electromagnetic field in a periodic and lossy linear dielectric. We focus on a one-dimensional model of point scatterers with given frequency-dependent complex permittivity, and construct an expansion of the field operators that is based on the Green function and preserves the canonical equal-time commutation relations. Translation symmetry is secured by working with an infinite lattice. The impact of absorption is examined using the local density of states and the decay rate of a phase-coherent dipole chain located inside the structure. Incidentally the model is used to bring about a geometrical interpretation of the reflection from multilayers KW - Quantenelektrodynamik KW - Quantenoptik KW - Photonische Kristalle KW - Gitterstreuung KW - Mehrfachstreuung KW - Electromagnetic Theory KW - Quantum Optics KW - Photonic Crystals KW - Gratings KW - Multiple Scattering Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-35280 ER - TY - THES A1 - Ohliger, Matthias T1 - Characterizing and measuring properties of continuous-variable quantum states T1 - Charakterisierung und Messung der Eigenschaften von Quantenzuständen mit kontinuierlichen Variablen N2 - We investigate properties of quantum mechanical systems in the light of quantum information theory. We put an emphasize on systems with infinite-dimensional Hilbert spaces, so-called continuous-variable systems'', which are needed to describe quantum optics beyond the single photon regime and other Bosonic quantum systems. We present methods to obtain a description of such systems from a series of measurements in an efficient manner and demonstrate the performance in realistic situations by means of numerical simulations. We consider both unconditional quantum state tomography, which is applicable to arbitrary systems, and tomography of matrix product states. The latter allows for the tomography of many-body systems because the necessary number of measurements scales merely polynomially with the particle number, compared to an exponential scaling in the generic case. We also present a method to realize such a tomography scheme for a system of ultra-cold atoms in optical lattices. Furthermore, we discuss in detail the possibilities and limitations of using continuous-variable systems for measurement-based quantum computing. We will see that the distinction between Gaussian and non-Gaussian quantum states and measurements plays an crucial role. We also provide an algorithm to solve the large and interesting class of naturally occurring Hamiltonians, namely frustration free ones, efficiently and use this insight to obtain a simple approximation method for slightly frustrated systems. To achieve this goals, we make use of, among various other techniques, the well developed theory of matrix product states, tensor networks, semi-definite programming, and matrix analysis. N2 - Die stürmische Entwicklung der Quanteninformationstheorie in den letzten Jahren brachte einen neuen Blickwinkel auf quantenmechanische Probleme. Insbesondere die fundamentale Eigenschaft der Verschränkung von Quantenzuständen spielt hierbei eine Schlüsselrolle. Einstein, Podolsky und Rosen haben 1935 versucht die Unvollständigkeit der Quantenmechanik zu demonstrieren, indem sie zeigten, dass sie keine lokale, realistische Therie ist und der Ausgang einer Messung an einem Ort von Messungen abhängen kann, die an beliebig weit entfernten Orten gemacht wurden. John Bell stellte 1964 eine, später nach ihm benannte, Ungleichung auf, die eine Grenze an mögliche Korrelationen von Messergebnissen in lokalen, realistischen Theorien gibt. Die Vorhersagen der Quatenmechanik verletzen diese Ungleichung, eine Tatsache, die 1981 von Alain Aspect und anderen auch experimentell bestätigt wurde. Solche nicht-lokalen Quantenzustände werden verschränkt'' genannt. In neuerer Zeit wurde Verschränkung nicht mehr nur als mysteriöse Eigenschaft der Quantenmechanik sondern auch als Resource für Aufgaben der Informationsverarbeitung gesehen. Ein Computer, der sich diese Eigenschaften der Quantenmechanik zu nutze macht, ein sogenannter Quantencomputer, würde es erlauben gewisse Aufgaben schnell zu lösen für die normale'' Computer zu lange brauchen. Das wichtigste Beispiel hierfür ist die Zerlegung von großen Zahlen in ihre Primfaktoren, für die Shor 1993 einen Quantenalgorithmus präsentierte. In dieser Arbeit haben wir uns mit den Eigenschaften von Quantensystemen, die durch sogenannte kontinuierliche Variablen beschrieben werden, beschäftigt. Diese sind nicht nur theoretisch sonder auch experimentell von besonderem Interesse, da sie quantenoptische Systeme beschreiben, die sich verhältnismäßig leicht im Labor präparieren, manipulieren und messen lassen. Wenn man eine vollständige Beschreibung eines Quantenzustandes erhalten will, braucht man, auf Grund der Heisenberg'schen Unschärferelation, mehrere Kopien von ihm an denen man dann Messungen durchführt. Wir haben eine Methode, compressed-sensing genannt, eingeführt um die Anzahl der nötigen Messungen substantiell zu reduzieren. Wir haben die theoretische Effizienz dieser Methode bewiesen und durch numerische Simulationen auch ihre Praktikabilität demonstriert. Desweiteren haben wir beschrieben, wie man compressed-sensing für die schon erwähnten optischen Systemen sowie für ultrakalte Atome experimentell realisieren kann. Ein zweites Hauptthema dieser Arbeit war messbasiertes Quantenrechnen. Das Standardmodell des Quantenrechnens basiert auf sogenannten Gattern, die eine genaue Kontrolle der Wechselwirkung zwischen den Bestandteilen des Quantencomputers erfordern. Messbasiertes Quantenrechnen hingegen kommt mit der Präparation eines geeigneten Quantenzustands, Resource genannt, gefolgt von einfachen Messungen auf diesem Zustand aus. Wir haben gezeigt, dass Systeme mit kontinuierlichen Variablen eine vorteilhafte Realisierung eines Quantencomputers in diesem Paradigma erlauben, es jedoch auch wichtige Beschränkungen gibt, die kompliziertere Zustandspräparationen und Messungen nötig machen. KW - Quantencomputer KW - Quantenoptik KW - Vielteilchentheorie KW - quantum computer KW - quantum optics KW - quantum many-body theory Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62924 ER - TY - THES A1 - Henkel, Carsten T1 - Coherence theory of atomic de Broglie waves and electromagnetic near fields N2 - Die Arbeit untersucht theoretisch die Wechselwirkung neutraler Teilchen (Atome, Moleküle) mit Oberflächen, soweit sie durch das elektromagnetische Feld vermittelt wird. Spektrale Energiedichten und Kohärenzfunktionen werden hergeleitet und liefern eine umfassende Charakterisierung des Felds auf der sub-Wellenlängen-Skala. Die Ergebnisse finden auf zwei Teilgebieten Anwendung: in der integrierten Atomoptik, wo ultrakalte Atome an thermische Oberflächen koppeln, und in der Nahfeldoptik, wo eine Auflösung unterhalb der Beugungsbegrenzung mit einzelnen Molekülen als Sonden und Detektoren erzielt werden kann. N2 - We theoretically discuss the interaction of neutral particles (atoms, molecules) with surfaces in the regime where it is mediated by the electromagnetic field. A thorough characterization of the field at sub-wavelength distances is worked out, including energy density spectra and coherence functions. The results are applied to typical situations in integrated atom optics, where ultracold atoms are coupled to a thermal surface, and to single molecule probes in near field optics, where sub-wavelength resolution can be achieved. KW - Kohärenztheorie KW - Quantenoptik KW - Quanten-Elektrodynamik (QED) KW - Atomoptik KW - Atomchip KW - Spektroskopie KW - Oberfläche KW - coherence theory KW - quantum optics KW - quantum electrodynamics (QED) KW - atom optics KW - atom chip KW - spectroscopy KW - surface Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001272 ER -