TY - THES A1 - Das, Samata T1 - Modelling particle acceleration in core-collapse supernova remnants inside circumstellar wind-blown bubbles T1 - Modellierung der Teilchenbeschleunigung in Kernkollaps-Supernova-Überresten innerhalb zirkumstellaren windgeblasenen Blasen N2 - Supernova remnants are considered to be the primary sources of galactic cosmic rays. These cosmic rays are assumed to be accelerated by the diffusive shock acceleration mechanism, specifically at shocks in the remnants. Particularly in the core-collapse scenario, these supernova remnant shocks expand inside the wind-blown bubbles structured by massive progenitors during their lifetime. Therefore, the complex environment of wind bubbles can influence the particle acceleration and radiation from the remnants. Further, the evolution of massive stars depends on their Zero Age Main Sequence mass, rotation, and metallicity. Consequently, the structures of the wind bubbles generated during the lifetime of massive stars should be considerably different. Hence, the particle acceleration in the core-collapse supernova remnants should vary, not only from the remnants evolving in the uniform environment but also from one another, depending on their progenitor stars. A core-collapse supernova remnant with a very massive 60 𝑀 ⊙ progenitor star has been considered to study the particle acceleration at the shock considering Bohm-like diffusion. This dissertation demonstrates the modification in particle acceleration and radiation while the remnant propagates through different regions of the wind bubble by impacts from the profiles of gas density, the temperature of the bubble and the magnetic field structure. Subsequently, in this thesis, I discuss the impacts of the non-identical ambient environment of core-collapse supernova remnants on particle spectra and the non-thermal emissions, considering 20 𝑀 ⊙ and 60 𝑀⊙ massive progenitors having different evolutionary tracks. Additionally, I also analyse the effect of cosmic ray streaming instabilities on particle spectra. To model the particle acceleration in the remnants, I have performed simulations in one-dimensional spherical symmetry using RATPaC code. The transport equation for cosmic rays and magnetic turbulence in test-particle approximation, along with the induction equation for the evolution of the large-scale magnetic field, have been solved simultaneously with the hydrodynamic equations for the expansion of remnants inside the pre-supernova circumstellar medium. The results from simulations describe that the spectra of accelerated particles in supernova remnants are regulated by density fluctuations, temperature variations, the large-scale magnetic field configuration and scattering turbulence. Although the diffusive shock acceleration mechanism at supernova remnant shock predicts the spectral index of 2 for the accelerated non-thermal particles, I have obtained the particle spectra that deviate from this prediction, in the core-collapse scenario. I have found that the particle spectral index reaches 2.5 for the supernova remnant with 60 𝑀 ⊙ progenitor when the remnant resides inside the shocked wind region of the wind bubble, and this softness persists at later evolutionary stages even with Bohm-like diffusion for accelerated particles. However, the supernova remnant with 20 𝑀 ⊙ progenitor does not demonstrate persistent softness in particle spectra from the influence of the hydrodynamics of the corresponding wind bubble. At later stages of evolution, the particle spectra illustrate softness at higher energies for both remnants as the consequence of the escape of high-energy particles from the remnants while considering the cosmic ray streaming instabilities. Finally, I have probed the emission morphology of remnants that varies depending on the progenitors, particularly in earlier evolutionary stages. This dissertation provides insight into different core-collapse remnants expanding inside wind bubbles, for instance, the calculated gamma-ray spectral index from the supernova remnant with 60 𝑀 ⊙ progenitor at later evolutionary stages is consistent with that of the observed supernova remnants expanding in dense molecular clouds. N2 - Supernova-Überreste gelten als die Hauptquellen der galaktischen kosmischen Strahlung. Diese kosmische Strahlung wird vermutlich durch den Mechanismus der diffusiven Schockbeschleunigung beschleunigt, insbesondere durch Schocks in den Überresten. Insbesondere im Szenario des Kernkollapses werden diese Supernova-Überreste innerhalb der windgeblasenen Blasen aus, die von massiven Progenitoren während ihrer Lebenszeit. Daher kann die komplexe Umgebung der Windblasen die Teilchenbeschleunigung und die Strahlung der Überreste beeinflussen. Außerdem hängt die Entwicklung von massereichen Sternen von ihrer Masse, Rotation und Metallizität in der Nullzeit der Hauptreihe ab. Folglich sollten die Strukturen der Windblasen, die während der Lebensdauer massereicher Sterne erzeugt werden, sehr unterschiedlich sein. Folglich sollte die Teilchenbeschleunigung in den Kernkollaps Supernovaüberresten nicht nur von den Überresten unterscheiden, die sich in einer einheitlichen Umgebung, sondern auch voneinander, je nach ihren Vorgängersternen. Ein Kernkollaps-Supernova-Überrest mit einem sehr massereichen 60 𝑀 ⊙ Vorläuferstern wurde betrachtet, um die Teilchenbeschleunigung am Schock unter Berücksichtigung der Bohm-ähnlichen Diffusion zu untersuchen. Diese Dissertation zeigt die Veränderung der Teilchenbeschleunigung und der Strahlung, während sich der Überrest durch verschiedene Regionen der Windblase ausbreitet, anhand der Profile der Gasdichte, der Temperatur der Blase und der Magnetfeldstruktur. Anschließend diskutiere ich in dieser Arbeit die Auswirkungen der nicht-identischen Umgebung von Supernova-Überresten auf die Teilchenspektren und die nicht-thermischen Emissionen unter Berücksichtigung von 20 𝑀 ⊙ und 60 𝑀 ⊙ massiven Vorläufern mit unterschiedlichen Entwicklungspfaden. Darüber hinaus analysiere ich auch die Auswirkungen von Instabilitäten der kosmischen Strahlung auf die Teilchenspektren. Um die Teilchenbeschleunigung in den Überresten zu modellieren, habe ich Simulationen in eindimensionaler dimensionalen sphärischen Symmetrie mit dem RATPaC-Code durchgeführt. Die Transportgleichung für kosmische Strahlung und die magnetische Turbulenz in der Testteilchen-Näherung, zusammen mit der Induktionsgleichung Induktionsgleichung für die Entwicklung des großräumigen Magnetfeldes, wurden gleichzeitig mit den hydro-dynamischen Gleichungen für die Expansion der Überreste im zirkumstellaren Medium vor der Supernova zirkumstellaren Mediums gelöst. Die Ergebnisse der Simulationen beschreiben, dass die Spektren der beschleunigten Teilchen in Supernovaüberresten durch Dichtefluktuationen, Temperaturschwankungen, die großräumige Magnetfeldkonfiguration und Streuturbulenzen reguliert werden. Obwohl der Mechanismus der diffusiven Schockbeschleunigung im Supernova-Überrest einen Spektralindex von 2 für die beschleunigten nicht-thermischen Teilchen vorhersagt, habe ich im Szenario des Kernkollapses Teilchenspektren erhalten, die von dieser Vorhersage abweichen. Ich habe herausgefunden, dass der Spektralindex der Teilchen für den Supernova-Überrest mit einem 60 𝑀 ⊙ Vorläufer 2,5 erreicht, wenn sich der Überrest in der geschockten Windregion der Windblase befindet, und diese Schwäche bleibt auch in späteren Entwicklungsstadien bestehen, selbst bei einer Bohm-ähnlichen Diffusion für beschleunigte Teilchen. Der Supernova-Überrest mit 20 𝑀 ⊙ Vorläufer zeigt jedoch keine anhaltende Weichheit in Teilchenspektren durch den Einfluss der Hydrodynamik der entsprechenden Windblase. In späteren Entwicklungsstadien zeigen die Teilchenspektren für beide Überreste eine Weichheit bei höheren Energien als Folge des Entweichens hochenergetischer Teilchen aus den Überresten unter Berücksichtigung der Instabilitäten des kosmischen Strahlenstroms. Schließlich habe ich die Emissionsmorphologie der Überreste untersucht, die je nach den Vorläufern variiert, insbesondere in früheren Entwicklungsstadien. Diese Dissertation gibt Aufschluss über verschiedene Kernkollapsüberreste, die sich in Windblasen ausdehnen. So stimmt beispielsweise der berechnete Gammastrahlen-Spektralindex des Supernova-Überrests mit 60 𝑀 ⊙ Vorläufer in späteren Entwicklungsstadien mit dem der beobachteten Supernova-Überreste überein, die sich in dichten Molekülwolken ausdehnen. KW - stellar evolution KW - wind bubble KW - supernova remnant KW - particle acceleration KW - non-thermal emission KW - nicht-thermische Emission KW - Teilchenbeschleunigung KW - Sternentwicklung KW - Supernova-Überrest KW - Windblase Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-614140 ER - TY - THES A1 - Wilhelm, Alina T1 - Stochastic re-acceleration of particles in supernova remnants T1 - Stochastische Nachbeschleunigung von Teilchen in Supernovaüberresten N2 - Supernova remnants (SNRs) are discussed as the most promising sources of galactic cosmic rays (CR). The diffusive shock acceleration (DSA) theory predicts particle spectra in a rough agreement with observations. Upon closer inspection, however, the photon spectra of observed SNRs indicate that the particle spectra produced at SNRs shocks deviate from the standard expectation. This work suggests a viable explanation for a softening of the particle spectra in SNRs. The basic idea is the re-acceleration of particles in the turbulent region immediately downstream of the shock. This thesis shows that at the re-acceleration of particles by the fast-mode waves in the downstream region can be efficient enough to impact particle spectra over several decades in energy. To demonstrate this, a generic SNR model is presented, where the evolution of particles is described by the reduced transport equation for CR. It is shown that the resulting particle and the corresponding synchrotron spectra are significantly softer compared to the standard case. Next, this work outlines RATPaC, a code developed to model particle acceleration and corresponding photon emissions in SNRs. RATPaC solves the particle transport equation in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The background magnetic field can be either computed from the induction equation or follows analytic profiles. This work presents an extended version of RATPaC that accounts for stochastic re-acceleration by fast-mode waves that provide diffusion of particles in momentum space. This version is then applied to model the young historical SNR Tycho. According to radio observations, Tycho’s SNR features the radio spectral index of approximately −0.65. In previous modeling approaches, this fact has been attributed to the strongly distinctive Alfvénic drift, which is assumed to operate in the shock vicinity. In this work, the problems and inconsistencies of this scenario are discussed. Instead, stochastic re-acceleration of electrons in the immediate downstream region of Tycho’s SNR is suggested as a cause for the soft radio spectrum. Furthermore, this work investigates two different scenarios for magnetic-field distributions inside Tycho’s SNR. It is concluded that magnetic-field damping is needed to account for the observed filaments in the radio range. Two models are presented for Tycho’s SNR, both of them feature strong hadronic contribution. Thus, a purely leptonic model is considered as very unlikely. Additionally, to the detailed modeling of Tycho’s SNR, this dissertation presents a relatively simple one-zone model for the young SNR Cassiopeia A and an interpretation for the recently analyzed VERITAS and Fermi-LAT data. It shows that the γ-ray emission of Cassiopeia A cannot be explained without a hadronic contribution and that the remnant accelerates protons up to TeV energies. Thus, Cassiopeia A is found to be unlikely a PeVatron. N2 - Supernovaüberreste werden als meistversprechende Quellen für die galaktische kosmische Strahlung angesehen. Die Theorie der diffusen Schockbeschleunigung prognostiziert ein Teilchenspektrum, das grob mit den Beobachtungen übereinstimmt. Dennoch weisen die Emissionsspektren von mehreren Supernovaüberresten bei näherer Betrachtung darauf hin, dass die an der Schockwelle erzeugten Teilchenspektren von der üblichen Erwartung abweichen. Im Rahmen dieser Dissertation wird eine tragfähige Erklärung für die weicheren Teilchenspektren in Supernovaüberresten vorgestellt. Die Grundidee ist dabei eine Nachbeschleunigung von Teilchen in einem turbulenten Bereich stromabwärts unmittelbar hinter der Stoßfront. Die vorliegende Arbeit demonstriert, dass die Nachbeschleunigung von Teilchen mittels der schnellen magnetoakustischen Wellen direkt hinter dem Shock das Teilchenspektrum signifikant beeinflussen kann. Um dies zu zeigen, wird ein generisches Modell für Supernovaüberreste benutzt, bei dem die Zeitentwicklung der Teilchen durch die reduzierte Transportgleichung der kosmischen Strahlung beschrieben wird. Es zeigt sich, dass die resultierenden Teilchen- sowie dazugehörigen Synchrotronspektren im Vergleich zum Standardfall deutlich weicher sind. Als Nächstes beschreibt diese Dissertation einen Code namens RATPaC, der zur Modellierung der Teilchenbeschleunigung und entsprechenden Photonenemissionen in Supernovaüberresten entwickelt wurde. RATPaC löst die Transportgleichung der kosmischen Strahlung im Test-Teilchen-Regime unter Verwendung hydrodynamischer Simulationen für den Plasmastrom eines Supernovaüberrestes. Das Magnetfeld kann entweder mithilfe der Induktionsgleichung berechnet werden oder folgt einer analytischen Verteilung. Diese Arbeit präsentiert eine erweiterte Version von RATPaC, die unter anderem die stochastische Nachbeschleunigung mittels der schnellen magnetoakustischen Wellen und damit die Teilchendiffusion im Impulsraum enthält. Diese Version wird angewendet, um den jungen historischen Supernovaüberrest Tycho zu modellieren. Gemäß den Beobachtungen im Radiobereich weist Tycho einen spektralen Index von ungefähr -0.65 auf. In den früheren Modellierungsansätzen wurde diese Tatsache dem stark ausgeprägten Alfvénischen Drift in der Schockumgebung zugeschrieben. Im Rahmen dieser Arbeit werden Probleme und Inkonsistenzen dieses Szenarios erläutert und diskutiert. Die Nachbeschleunigung von Elektronen unmittelbar stromabwärts hinter dem Schock wird stattdessen als mögliche Ursache für das weiche Photonenspektrum im Radiobereich vorgeschlagen. Darüber hinaus werden in dieser Dissertation zwei unterschiedliche Szenarien für die Magnetfeldverteilung in Tychos Supernovaüberrest untersucht. Es wird festgestellt, dass die Dämpfung des Magnetfeldes erforderlich ist, um die beobachteten Filamente im Radiobereich zu erklären. Insgesamt werden zwei Modelle für Tychos Supernovaüberrest vorgestellt, die beide einen ausgeprägten hadronischen Beitrag aufweisen. Daraus wird festgestellt, dass ein rein leptonishes Model äußerst unwahrscheinlich ist. Zusätzlich zur detaillierten Modellierung von Tycho präsentiert diese Dissertation ein relativ einfaches Ein-Zonen-Modell für den jungen Supernovaüberrest Cassiopeia A und eine Interpretation für seine vor Kurzem analysierten VERITAS- und Fermi-LAT-Daten. Im Rahmen dieser Arbeit wird gezeigt, dass die -Strahlung von Cassiopeia A ohne einen hadronischen Beitrag nicht erklärt werden kann. Der Überrest soll dabei Protonen bis auf TeV-Energielevel beschleunigen. Somit ist es sehr unwahrscheinlich, dass es sich bei Cassiopeia A um ein PeVatron handelt. KW - supernova remnants KW - particle acceleration KW - Cassiopeia A KW - SN 1572 KW - cosmic rays KW - Supernovaüberreste KW - kosmische Strahlung KW - Teilchenbeschleunigung KW - Cassiopeia A KW - SN 1572 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-512915 ER - TY - THES A1 - Brose, Robert T1 - From dawn till dusk BT - modelling particle acceleration in supernova remnants N2 - Supernova remnants are believed to be the source of cosmic rays with energies up to 10^15 eV that are produced within our Galaxy. The acceleration mechanism associated with the collision-less shocks in supernova remnants - diffusive shock acceleration - predicts a spectral index of the accelerated non-thermal particles of s = 2. However, measurements of non-thermal emission in radio, X-rays and gamma-rays reveal significant deviations of the particles spectral index from the canonical value of s = 2. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next-generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of ≈100 yrs and inferred shock speed of ≈ 14, 000 km/s could make it an efficient particle accelerator. I performed spherical symmetric 1D simulations with the RATPaC code, in which I simultaneously solved the transport equation for cosmic rays, the transport equation for magnetic turbulence, and the hydro-dynamical equations for the gas flow. Separately computed distributions of the particles accelerated at the forward and the reverse shock were then used to calculate the spectra of synchrotron, inverse Compton, and Pion-decay radiation from the source. The emission from G1.9+0.3 can be self-consistently explained within the test-particle limit. I find that the X-ray flux is dominated by emission from the forward shock while most of the radio emission originates near the reverse shock, which makes G1.9+0.3 the first remnant with non-thermal radiation detected from the reverse shock. The flux of very-high-energy gamma-ray emission from G1.9+0.3 is expected to be close to the sensitivity threshold of the Cherenkov Telescope Array. The limited time available to grow large-scale turbulence limits the maximum energy of particles to values below 100 TeV, hence G1.9+0.3 is not a PeVatron. Although there are many models for the acceleration of cosmic rays in Supernova remnants, the escape of cosmic rays from these sources is yet understudied. I use our time-dependent acceleration code RATPaC to study the acceleration of cosmic rays and their escape in post-adiabatic Supernova remnants and calculate the subsequent gamma-ray emission from inverse-Compton scattering and Pion decay. My simulations span 100,000 years, thus covering the free-expansion, the Sedov-Taylor, and the beginning of the post-adiabatic phase of the remnant’s evolution. At later stages of the evolution cosmic rays over a wide range of energy can reside outside of the remnant, creating spectra that are softer than predicted by standard diffusive shock acceleration and feature breaks in the 10 - 100 GeV-range. The total spectrum of cosmic rays released into the interstellar medium has a spectral index of s ≈ 2.4 above roughly 10 GeV which is close to that required by Galactic propagation models. I further find the gamma-ray luminosity to peak around an age of 4,000 years for inverse-Compton-dominated high-energy emission. Remnants expanding in low-density media emit generally more inverse-Compton radiation matching the fact that the brightest known supernova remnants - RCW86, Vela Jr, HESSJ1721-347 and RXJ1713.7-3946 - are all expanding in low density environments. The importance of feedback from the cosmic-rays on the hydrodynamical evolution of the remnants is debated as a possibility to obtain soft cosmic-ray spectra at low energies. I performed spherically symmetric 1-D simulations with a modified version of the RATPaC code, in which I simultaneously solve the transport equation for cosmic rays and the hydrodynamical equations, including the back-reaction of the cosmic-ray pressure on the flow profiles. Besides the known modification of the flow profiles and the consequently curved cosmic-ray spectra, steady-state models for non-linear diffusive shock acceleration overpredict the total compression ratio that can be reached with cosmic-ray feedback, as there is limited time for building these modifications. Further, I find modifications to the downstream flow structure that change the evolutionary behavior of the remnant and trigger a cosmic-ray-induced instability close to the contact discontinuity, if and when the cosmic-ray pressure becomes dominant there. N2 - Es wird vermutet das Supernovaüberreste die Quelle der galaktischen kosmischen Strahlung mit Energien bis zu 10^15eV sein können. Der Beschleunigungsprozess der mit den kollisionsfreien Schocks in Supernovaüberresten in Verbindung gebracht wird - diffuse Schockwellenbeschleunigung - sagt nicht-thermische Teilchenspektren mit einem Spektralindex von s=2 voraus. Messungen nicht-thermischer Strahlung im Radio-, Röntgen- und Gammastrahlenbereich zeigen teils deutliche Abweichungen von dieser Vorhersage. Der jüngste galaktische Supernovaüberrest G1.9+0.3 ist ein interessantes Ziel für zukünftige Gammastrahlenteleskope. Bis jetzt wurde der Überrest nur im Radio- und Röntgenband entdeckt aber sein geringes Alter von ~100 Jahren und die gemessenen hohen Schockgeschwindigkeiten von ~14,000km/s sollten Teilchenbeschleunigung auch bis zu sehr hohen Energien ermöglichen. In dieser Arbeit wurden 1D-Simulationen der Teilchenbeschleunigung in G1.9+0.3 mit Hilfe der RATPaC-Programmbibliothek durchgeführt, wobei das System der gekoppelten Differentialgleichungen für den Teilchentransport, den Transport der magnetischen Turbulenz und der Standardgasgleichungen gelöst wurde. Die separat berechneten Verteilungen der Teilchen an Vorwärts- und Rückwärtsschock wurden benutzt um die Emission des Überrests im Radio-, Röntgen und Gammastrahlungsbereich zu bestimmen. Die Emissionen von G1.9+0.3 können selbst konsistent in der Testteilchennäherung bestimmt werden. Die Röntgenemission wird vom Vorwärtsschock dominiert, während die Radioemissionen hauptsächlich vom Rückwätsschock stammen. Dies macht G1.9+0.3 zum ersten Überrest mit detektierter nich-thermischer Strahlung aus dem Bereich des Rückwärtsschocks. Die erwartet Gammastrahlungsemission ist nahe dem Detektionslimit des zukünftigen Cherenkov Telescope Arrays. Die geringe Alter von G1.9+0.3 begrenzt die Maximalenergie, die im Beschleunigungsprozess erreicht werden kann auf Werte unterhalb von 100TeV. Demnach ist G1.9+0.3 kein PeVatron. Auch wenn es zahlreiche Modelle zur Teilchenbeschleunigung in Supernovaüberresten gibt, ist das Entkommen der Teilchen aus den Überresten zur Zeit wenig erforscht. Mit Hilfe von RATPaC haben wir die Evolution und Teilchenbeschleunigung in Supernovaüberresten über 100,000 Jahre simuliert. Dieser Zeitraum deckt einen Großteil der Lebensspanne eines Supernovaüberrests ab und endet mit der letzten Teil der postadiabatischen Phase der Entwicklung des Überrests. In den späten Phasen der Entwicklung des Überrests können Teilchen in einem großen Energiebereich aus dem Überrest entweichen. Dies erzeugt Emissionspektren, die weicher sind als durch Fermibeschleunigung vorhergesagt, und die spektrale Brüche im Bereich von 10-100GeV aufweisen. Das Produktionsspektren der Überreste hat einen spektralen Index von s~2.4 oberhalb von 10GeV, was ungefähr mit den Spektren übereinstimmt, die Quellen in galaktischen Propagationsmodellen aufweisen müssen. Weiterhin erreichen die Überreste ihre größte Helligkeit im Gammabereich nach etwa 4000 Jahren wenn diese durch inverse Comptonstreuung erzeugt werden. Dabei erreichen Überreste in Medien mit geringer Umgebungsdichte größere Helligkeiten, was sich mit den Beobachtungen der hellsten Supernovaüberreste - RCW86, Vela Jr., HESSJ1721-347 und RXJ1713.7-3946 - deckt, die alle in Bereichen sehr geringer Umgebungsdichte expandieren. In der Literatur wird die Möglichkeit diskutiert, dass die Rückkopplung der Beschleunigten Teilchen auf die Struktur der Überreste für die beobachteten weichen Strahlungsspektren verantwortlich ist. Im Rahmen dieser Arbeit wurde eine modifizierte Version von RATPaC entwickelt, die diesen Prozess abbilden kann. Neben den bekannten Rückkopplungen zeigt sich, dass bisherige Modelle unter der Annahme eines Gleichgewichtszustandes für die beschleunigten Teilchen die erreicht maximal Kompression des Plasmas durch den Schock und damit die Härte der Teilchenspektren überschätzen. In unseren zeit aufgelösten Berechnungen ist die maximale Kompression durch die limitierte verfügbare Zeit begrenzt. Zusätzlich zeigt sich das Auftreten einer Instabilität die durch die Rückkopplung der kosmischen Strahlung nahe der Kontaktdiskontinuität hervorgerufen wird. KW - supernova remnant KW - particle acceleration KW - gamma rays KW - Supernovaüberrest KW - Teilchenbeschleunigung KW - Gammastrahlung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-470865 ER -