TY - JOUR A1 - Stolbova, Veronika A1 - Surovyatkina, Elena A1 - Bookhagen, Bodo A1 - Kurths, Jürgen T1 - Tipping elements of the Indian monsoon: Prediction of onset and withdrawal JF - Geophysical research letters N2 - Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for the life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions-tipping elements of the monsoon-and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset 2 weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El Nino-Southern Oscillation. Y1 - 2016 U6 - https://doi.org/10.1002/2016GL068392 SN - 0094-8276 SN - 1944-8007 VL - 43 SP - 3982 EP - 3990 PB - American Geophysical Union CY - Washington ER - TY - CHAP A1 - Hainzl, Sebastian A1 - Scherbaum, Frank A1 - Zöller, Gert T1 - Spatiotemporal earthquake patterns N2 - Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7267 N1 - [Poster] ER - TY - JOUR A1 - Trauth, Martin H. A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Strecker, Manfred T1 - Multiple landslide clusters record quaternary climate changes in the northwestern Argentine andes N2 - The chronology of multiple landslide deposits and related lake sediments in the semi-arid eastern Argentine Cordillera suggests that major mass movements cluster in two time periods during the Quaternary, i.e. between 40 and 25 and after 5 14C kyr BP. These clusters may correspond to the Minchin (maximum at around 28-27 14C kyr BP) and Titicaca wet periods (after 3.9 14C kyr BP). The more humid conditions apparently caused enhanced landsliding in this environment. In contrast, no landslide-related damming and associated lake sediments occurred during the Coipasa (11.5- 10 14C yr BP) and Tauca wet periods (14.5-11 14C yr BP). The two clusters at 40-25 and after 5 14C kyr BP may correspond to periods where the El Niño-Southern Oscillation (ENSO) and Tropical Atlantic Sea Surface Temperature Variability (TAV) were active. This, however, was not the case during the Coipasa and Tauca wet periods. Lake-balance modelling of a landslide-dammed lake suggests a 10-15% increase in precipitation and a 3-4 ° C decrease in temperature at ~30 14C kyr BP as compared to the present. In addition, time-series analysis reveals a strong ENSO and TAV during that time. The landslide clusters in northwestern Argentina are therefore best explained by periods of more humid and more variable climates. Y1 - 2003 UR - http://dx.doi.org/10.1016/S0031-0182(03)00273-6 ER - TY - JOUR A1 - Lechleitner, Franziska A. A1 - Baldini, James U. L. A1 - Breitenbach, Sebastian Franz Martin A1 - Fohlmeister, Jens Bernd A1 - McIntyre, Cameron A1 - Goswami, Bedartha A1 - Jamieson, Robert A. A1 - van der Voort, Tessa S. A1 - Prufer, Keith A1 - Marwan, Norbert A1 - Culleton, Brendan J. A1 - Kennett, Douglas J. A1 - Asmerom, Yemane A1 - Polyak, Victor A1 - Eglinton, Timothy I. T1 - Hydrological and climatological controls on radiocarbon concentrations in a tropical stalagmite JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Precisely-dated stalagmites are increasingly important archives for the reconstruction of terrestrial paleoclimate at very high temporal resolution. In-depth understanding of local conditions at the cave site and of the processes driving stalagmite deposition is of paramount importance for interpreting proxy signals incorporated in stalagmite carbonate. Here we present a sub-decadally resolved dead carbon fraction (DCF) record for a stalagmite from Yok Balum Cave (southern Belize). The record is coupled to parallel stable carbon isotope (delta C-13) and U/Ca measurements, as well as radiocarbon (C-14) measurements from soils overlying the cave system. Using a karst carbon cycle model we disentangle the importance of soil and karst processes on stalagmite DCF incorporation, revealing a dominant host rock dissolution control on total DCF. Covariation between DCF, delta C-13, and U/Ca indicates that karst processes are a common driver of all three parameters, suggesting possible use of delta C-13 and trace element ratios to independently quantify DCF variability. A statistically significant multi-decadal lag of variable length exists between DCF and reconstructed solar activity, suggesting that solar activity influenced regional precipitation in Mesoamerica over the past 1500 years, but that the relationship was non-static. Although the precise nature of the observed lag is unclear, solar-induced changes in North Atlantic oceanic and atmospheric dynamics may play a role. (C) 2016 Elsevier Ltd. All rights reserved. KW - Stalagmite KW - Tropics KW - Radiocarbon KW - Trace elements KW - Hydroclimate Y1 - 2016 U6 - https://doi.org/10.1016/j.gca.2016.08.039 SN - 0016-7037 SN - 1872-9533 VL - 194 SP - 233 EP - 252 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Marwan, Norbert A1 - Schwarz, Udo A1 - Kurths, Jürgen A1 - Strecker, Manfred T1 - ENSO Impact on landslide generation in northwestern Argentina N2 - Climatic changes are of major importance in landslide generation in the Argentine Andes. Increased humidity as a potential influential factor was inferred from the temporal clustering of landslide deposits during a period of significantly wetter climate, 30,000 years ago. A change in seasonality was tested by comparing past (inferred from annual-layered lake deposits, 30,000 years old) and modern (present-day observations) precipitation changes. Quantitative analysis of cross recurrence plots were developed to compare the influence of the El Nino/Southern Oscillation (ENSO) on present and past rainfall variations. This analysis has shown the stronger influence of NE trades in the location of landslide deposits in the intra-andean basin and valleys, what caused a higher contrast between summer and winter rainfall and an increasing of precipitation in La Nina years. This is believed to reduce thresholds for landslide generation in the arid to semiarid intra-andean basins and valleys. Y1 - 2000 SN - 1029-7006 ER - TY - GEN A1 - Shprits, Yuri Y. A1 - Zhelavskaya, Irina A1 - Green, Janet C. A1 - Pulkkinen, Antti A. A1 - Horne, Richard B. A1 - Pitchford, David A1 - Glover, Alexi T1 - Discussions on Stakeholder Requirements for Space Weather-Related Models T2 - Space Weather: The International Journal of Research and Applications N2 - Participants of the 2017 European Space Weather Week in Ostend, Belgium, discussed the stakeholder requirements for space weather-related models. It was emphasized that stakeholders show an increased interest in space weather-related models. Participants of the meeting discussed particular prediction indicators that can provide first-order estimates of the impact of space weather on engineering systems. KW - 7924 KW - 7934 KW - 7959 Y1 - 2018 U6 - https://doi.org/10.1002/2018SW001864 SN - 1542-7390 VL - 16 IS - 4 SP - 341 EP - 342 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Smirnov, Artem G. A1 - Kronberg, Elena A. A1 - Daly, Patrick W. A1 - Aseev, Nikita A1 - Shprits, Yuri Y. A1 - Kellerman, Adam C. T1 - Adiabatic Invariants Calculations for Cluster Mission: A Long-Term Product for Radiation Belts Studies T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Cluster mission has produced a large data set of electron flux measurements in the Earth's magnetosphere since its launch in late 2000. Electron fluxes are measured using Research with Adaptive Particle Imaging Detector (RAPID)/Imaging Electron Spectrometer (IES) detector as a function of energy, pitch angle, spacecraft position, and time. However, no adiabatic invariants have been calculated for Cluster so far. In this paper we present a step-by-step guide to calculations of adiabatic invariants and conversion of the electron flux to phase space density (PSD) in these coordinates. The electron flux is measured in two RAPID/IES energy channels providing pitch angle distribution at energies 39.2-50.5 and 68.1-94.5 keV in nominal mode since 2004. A fitting method allows to expand the conversion of the differential fluxes to the range from 40 to 150 keV. Best data coverage for phase space density in adiabatic invariant coordinates can be obtained for values of second adiabatic invariant, K, similar to 10(2), and values of the first adiabatic invariant mu in the range approximate to 5-20 MeV/G. Furthermore, we describe the production of a new data product "LSTAR," equivalent to the third adiabatic invariant, available through the Cluster Science Archive for years 2001-2018 with 1-min resolution. The produced data set adds to the availability of observations in Earth's radiation belts region and can be used for long-term statistical purposes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1192 KW - L-Asterisk KW - magnetosphere KW - electrons KW - model Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523915 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Smirnov, Artem G. A1 - Kronberg, Elena A. A1 - Daly, Patrick W. A1 - Aseev, Nikita A1 - Shprits, Yuri Y. A1 - Kellerman, Adam C. T1 - Adiabatic Invariants Calculations for Cluster Mission: A Long-Term Product for Radiation Belts Studies JF - Journal of Geophysical Research: Space Physics N2 - The Cluster mission has produced a large data set of electron flux measurements in the Earth's magnetosphere since its launch in late 2000. Electron fluxes are measured using Research with Adaptive Particle Imaging Detector (RAPID)/Imaging Electron Spectrometer (IES) detector as a function of energy, pitch angle, spacecraft position, and time. However, no adiabatic invariants have been calculated for Cluster so far. In this paper we present a step-by-step guide to calculations of adiabatic invariants and conversion of the electron flux to phase space density (PSD) in these coordinates. The electron flux is measured in two RAPID/IES energy channels providing pitch angle distribution at energies 39.2-50.5 and 68.1-94.5 keV in nominal mode since 2004. A fitting method allows to expand the conversion of the differential fluxes to the range from 40 to 150 keV. Best data coverage for phase space density in adiabatic invariant coordinates can be obtained for values of second adiabatic invariant, K, similar to 10(2), and values of the first adiabatic invariant mu in the range approximate to 5-20 MeV/G. Furthermore, we describe the production of a new data product "LSTAR," equivalent to the third adiabatic invariant, available through the Cluster Science Archive for years 2001-2018 with 1-min resolution. The produced data set adds to the availability of observations in Earth's radiation belts region and can be used for long-term statistical purposes. KW - L-Asterisk KW - magnetosphere KW - electrons KW - model Y1 - 2019 VL - 125 IS - 2 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Agarwal, Ankit A1 - Guntu, Ravikumar A1 - Banerjee, Abhirup A1 - Gadhawe, Mayuri Ashokrao A1 - Marwan, Norbert T1 - A complex network approach to study the extreme precipitation patterns in a river basin JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes. Y1 - 2022 U6 - https://doi.org/10.1063/5.0072520 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 1 PB - American Institute of Physics CY - Woodbury, NY ER -