TY - JOUR A1 - Beaulieu, Jean-Philippe A1 - Bennett, David P. A1 - Fouqué, Pascal A1 - Williams, Andrew A1 - Dominik, Martin A1 - Jorgensen, Uffe Grae A1 - Kubas, Daniel A1 - Cassan, Arnaud A1 - Coutures, Christian A1 - Greenhill, John A1 - Hill, Kym A1 - Menzies, John A1 - Sackett, Penny D. A1 - Albrow, Michael D. A1 - Brillant, Stephane A1 - Caldwell, John A. R. A1 - Calitz, Johannes Jacobus A1 - Cook, Kem H. A1 - Corrales Cosmeli, Esperanza de Santa Cecilia A1 - Desort, Morgan A1 - Dieters, Stefan A1 - Dominis, Dijana A1 - Donatowicz, Jadzia A1 - Hoffman, Martie A1 - Kane, Stephen R. A1 - Marquette, Jean-Baptiste A1 - Martin, Ralph A1 - Meintjes, Pieter A1 - Pollard, Karen R. A1 - Sahu, Kailash C. A1 - Vinter, Christian A1 - Wambsganss, Joachim A1 - Woller, Kristian A1 - Horne, Keith A1 - Steele, Iain A1 - Bramich, Daniel M. A1 - Burgdorf, Martin A1 - Snodgrass, Colin A1 - Bode, Mike A1 - Udalski, Andr T1 - Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing N2 - In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars ( the most common stars in our Galaxy), this model favours the formation of Earth-mass (M+) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (AU), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars(1-4). More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 AU from normal stars. Here we report the discovery of a 5.5(-2.7)(+5.5)M(+) planetary companion at a separation of 2.6(- 0.6)(+1.5) AU from a 0.22(-0.11)(+0.21)M(.) M-dwarf star, where M-. refers to a solar mass. (We propose to name it OGLE- 2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory. Y1 - 2006 UR - http://www.nature.com/nature/ U6 - https://doi.org/10.1038/Nature04441 SN - 0028-0836 ER -