TY - JOUR A1 - Pingel, P. A1 - Neher, Dieter T1 - Comprehensive picture of p-type doping of P3HT with the molecular acceptor F(4)TCNQ JF - Physical review : B, Condensed matter and materials physics N2 - By means of optical spectroscopy, Kelvin probe, and conductivity measurements, we study the p-type doping of the donor polymer poly(3-hexylthiophene), P3HT, with the molecular acceptor tetrafluorotetracyanoquin-odimethane, F(4)TCNQ, covering a broad range of molar doping ratios from the ppm to the percent regime. Thorough quantitative analysis of the specific near-infrared absorption bands of ionized F(4)TCNQ reveals that almost every F(4)TCNQ dopant undergoes integer charge transfer with a P3HT site. However, only about 5% of these charge carrier pairs are found to dissociate and contribute a free hole for electrical conduction. The nonlinear behavior of the conductivity on doping ratio is rationalized by a numerical mobility model that accounts for the broadening of the energetic distribution of transport sites by the Coulomb potentials of ionized F(4)TCNQ dopants. DOI: 10.1103/PhysRevB.87.115209 Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevB.87.115209 SN - 1098-0121 VL - 87 IS - 11 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Pingel, P. A1 - Schwarzl, R. A1 - Neher, Dieter T1 - Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene) JF - Applied physics letters N2 - Employing impedance spectroscopy, we have studied the hole density, conductivity, and mobility of poly(3-hexylthiophene), P3HT, doped with the strong molecular acceptor tetrafluorotetracyanoquinodimethane, F(4)TCNQ. We find that the hole density increases linearly with the F(4)TCNQ concentration. Furthermore, the hole mobility is decreased upon doping at low-to-medium doping level, which is rationalized by an analytic model of carrier mobility in doped organic semiconductors [V. I. Arkhipov, E. V. Emelianova, P. Heremans, and H. Bassler, Phys. Rev. B 72, 235202 (2005)]. We infer that the presence of ionized F(4)TCNQ molecules in the P3HT layer increases energetic disorder, which diminishes the carrier mobility. Y1 - 2012 U6 - https://doi.org/10.1063/1.3701729 SN - 0003-6951 VL - 100 IS - 14 PB - American Institute of Physics CY - Melville ER -