TY - JOUR A1 - Chen, Xuhui A1 - Chatterjee, Ritaban A1 - Zhang, Haocheng A1 - Pohl, Martin A1 - Fossati, Giovanni A1 - Boettcher, Markus A1 - Bailyn, Charles D. A1 - Bonning, Erin W. A1 - Buxton, Michelle A1 - Coppi, Paolo A1 - Isler, Jedidah A1 - Maraschi, Laura A1 - Urry, Meg T1 - Magnetic field amplification and flat spectrum radio quasars JF - Monthly notices of the Royal Astronomical Society N2 - We perform time-dependent, spatially resolved simulations of blazar emission to evaluate several flaring scenarios related to magnetic-field amplification and enhanced particle acceleration. The code explicitly accounts for light-travel-time effects and is applied to flares observed in the flat spectrum radio quasar (FSRQ) PKS 0208-512, which show optical/gamma-ray correlation at some times, but orphan optical flares at other times. Changes in both the magnetic field and the particle acceleration efficiency are explored as causes of flares. Generally, external Compton (EC) emission appears to describe the available data better than a synchrotron self-Compton (SSC) scenario, and in particular orphan optical flares are difficult to produce in the SSC framework. X-ray soft-excesses, gamma-ray spectral hardening, and the detections at very high energies of certain FSRQs during flares find natural explanations in the EC scenario with particle acceleration change. Likewise, optical flares with/without gamma-ray counterparts can be explained by different allocations of energy between the magnetization and particle acceleration, which may be related to the orientation of the magnetic field relative to the jet flow. We also calculate the degree of linear polarization and polarization angle as a function of time for a jet with helical magnetic field. Tightening of the magnetic helix immediately downstream of the jet perturbations, where flares occur, can be sufficient to explain the increases in the degree of polarization and a rotation by a parts per thousand yen180A degrees of the observed polarization angle, if light-travel-time effects are properly considered. KW - radiation mechanisms: non-thermal KW - galaxies: active KW - galaxies: jets KW - quasars: individual: PKS 0208-512 Y1 - 2014 U6 - https://doi.org/10.1093/mnras/stu713 SN - 0035-8711 SN - 1365-2966 VL - 441 IS - 3 SP - 2188 EP - 2199 PB - Oxford Univ. Press CY - Oxford ER -