TY - JOUR A1 - de Jong, S. A1 - Kukreja, R. A1 - Trabant, C. A1 - Pontius, N. A1 - Chang, C. F. A1 - Kachel, T. A1 - Beye, Martin A1 - Sorgenfrei, Florian A1 - Back, C. H. A1 - Braeuer, B. A1 - Schlotter, W. F. A1 - Turner, J. J. A1 - Krupin, O. A1 - Doehler, M. A1 - Zhu, D. A1 - Hossain, M. A. A1 - Scherz, A. O. A1 - Fausti, D. A1 - Novelli, F. A1 - Esposito, M. A1 - Lee, W. S. A1 - Chuang, Y. D. A1 - Lu, D. H. A1 - Moore, R. G. A1 - Yi, M. A1 - Trigo, M. A1 - Kirchmann, P. A1 - Pathey, L. A1 - Golden, M. S. A1 - Buchholz, Marcel A1 - Metcalf, P. A1 - Parmigiani, F. A1 - Wurth, W. A1 - Föhlisch, Alexander A1 - Schuessler-Langeheine, Christian A1 - Duerr, H. A. T1 - Speed limit of the insulator-metal transition in magnetite JF - Nature materials N2 - As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown(1), magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible(2-8). Recently, three- Fe- site lattice distortions called trimeronswere identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase(9). Here we investigate the Verwey transition with pump- probe X- ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two- step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5 +/- 0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics(10). Y1 - 2013 U6 - https://doi.org/10.1038/NMAT3718 SN - 1476-1122 SN - 1476-4660 VL - 12 IS - 10 SP - 882 EP - 886 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Pontius, N. A1 - Kachel, T. A1 - Schüssler-Langeheine, C. A1 - Schlotter, W. F. A1 - Beye, Martin A1 - Sorgenfrei, Florian A1 - Chang, C. F. A1 - Föhlisch, Alexander A1 - Wurth, W. A1 - Metcalf, P. A1 - Leonov, I. A1 - Yaresko, A. A1 - Stojanovic, N. A1 - Berglund, Martin A1 - Guerassimova, N. A1 - Duesterer, S. A1 - Redlin, H. A1 - Duerr, H. A. T1 - Time-resolved resonant soft x-ray diffraction with free-electron lasers femtosecond dynamics across the Verwey transition in magnetite JF - Applied physics letters N2 - Resonant soft x-ray diffraction (RSXD) with femtosecond (fs) time resolution is a powerful tool for disentangling the interplay between different degrees of freedom in strongly correlated electron materials. It allows addressing the coupling of particular degrees of freedom upon an external selective perturbation, e. g., by an optical or infrared laser pulse. Here, we report a time-resolved RSXD experiment from the prototypical correlated electron material magnetite using soft x-ray pulses from the free-electron laser FLASH in Hamburg. We observe ultrafast melting of the charge-orbital order leading to the formation of a transient phase, which has not been observed in equilibrium. Y1 - 2011 U6 - https://doi.org/10.1063/1.3584855 SN - 0003-6951 VL - 98 IS - 18 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Eschenlohr, Andrea A1 - Battiato, M. A1 - Maldonado, R. A1 - Pontius, N. A1 - Kachel, T. A1 - Holldack, K. A1 - Mitzner, Rolf A1 - Föhlisch, Alexander A1 - Oppeneer, P. M. A1 - Stamm, C. T1 - Ultrafast spin transport as key to femtosecond demagnetization JF - Nature materials N2 - Irradiating a ferromagnet with a femtosecond laser pulse is known to induce an ultrafast demagnetization within a few hundred femtoseconds. Here we demonstrate that direct laser irradiation is in fact not essential for ultrafast demagnetization, and that electron cascades caused by hot electron currents accomplish it very efficiently. We optically excite a Au/Ni layered structure in which the 30 nm Au capping layer absorbs the incident laser pump pulse and subsequently use the X-ray magnetic circular dichroism technique to probe the femtosecond demagnetization of the adjacent 15 nm Ni layer. A demagnetization effect corresponding to the scenario in which the laser directly excites the Ni film is observed, but with a slight temporal delay. We explain this unexpected observation by means of the demagnetizing effect of a superdiffusive current of non-equilibrium, non-spin-polarized electrons generated in the Au layer. Y1 - 2013 U6 - https://doi.org/10.1038/NMAT3546 SN - 1476-1122 VL - 12 IS - 4 SP - 332 EP - 336 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Eschenlohr, Andrea A1 - Battiato, Mario A1 - Maldonado, P. A1 - Pontius, N. A1 - Kachel, T. A1 - Holldack, K. A1 - Mitzner, Rolf A1 - Föhlisch, Alexander A1 - Oppeneer, P. M. A1 - Stamm, Christian T1 - Optical excitation of thin magnetic layers in multilayer structures Reply T2 - Nature materials Y1 - 2014 U6 - https://doi.org/10.1038/nmat3851 SN - 1476-1122 SN - 1476-4660 VL - 13 IS - 2 SP - 102 EP - 103 PB - Nature Publ. Group CY - London ER -