TY - THES A1 - Bischofs, Ilka Bettina T1 - Elastic interactions of cellular force patterns N2 - Gewebezellen sammeln ständig Informationen über die mechanischen Eigenschaften ihrer Umgebung, indem sie aktiv an dieser ziehen. Diese Kräfte werden an Zell-Matrix-Kontakten übertragen, die als Mechanosensoren fungieren. Jüngste Experimente mit Zellen auf elastischen Substraten zeigen, dass Zellen sehr empfindlich auf Veränderungen der effektiven Steifigkeit ihrer Umgebung reagieren, die zu einer Reorganisation des Zytoskeletts führen können. In dieser Arbeit wird ein theoretisches Model entwickelt, um die Selbstorganisation von Zellen in weichen Materialien vorherzusagen. Obwohl das Zellverhalten durch komplexe regulatorische Vorgänge in der Zelle gesteuert wird, scheint die typische Antwort von Zellen auf mechanische Reize eine einfache Präferenz für große effektive Steifigkeit der Umgebung zu sein, möglicherweise weil in einer steiferen Umgebung Kräfte an den Kontakten effektiver aufgebaut werden können. Der Begriff Steifigkeit umfasst dabei sowohl Effekte, die durch größere Härte als auch durch elastische Verzerrungsfelder in der Umgebung verursacht werden. Diese Beobachtung kann man als ein Extremalprinzip in der Elastizitätstheorie formulieren. Indem man das zelluläre Kraftmuster spezifiziert, mit dem Zellen mit ihrer Umgebung wechselwirken, und die Umgebung selbst als linear elastisches Material modelliert, kann damit die optimale Orientierung und Position von Zellen vorhergesagt werden. Es werden mehrere praktisch relevante Beispiele für Zellorganisation theoretisch betrachtet: Zellen in externen Spannungsfeldern und Zellen in der Nähe von Grenzflächen für verschiedene Geometrien und Randbedingungen des elastischen Mediums. Dafür werden die entsprechenden elastischen Randwertprobleme in Vollraum, Halbraum und Kugel exakt gelöst. Die Vorhersagen des Models stimmen hervorragend mit experimentellen Befunden für Fibroblastzellen überein, sowohl auf elastischen Substraten als auch in physiologischen Hydrogelen. Mechanisch aktive Zellen wie Fibroblasten können auch elastisch miteinander wechselwirken. Es werden daher optimale Strukturen als Funktion von Materialeigenschaften und Zelldichte bzw. der Geometrie der Zellpositionen berechnet. Schließlich wird mit Hilfe von Monte Carlo Simulationen der Einfluss stochastischer Störungen auf die Strukturbildung untersucht. Das vorliegende Model trägt nicht nur zu einem besseren Verständnis von vielen physiologischen Situationen bei, sondern könnte in Zukunft auch für biomedizinische Anwendungen benutzt werden, um zum Beispiel Protokolle für künstliche Gewebe im Bezug auf Substratgeometrie, Randbedingungen, Materialeigenschaften oder Zelldichte zu optimieren. N2 - Adherent cells constantly collect information about the mechanical properties of their extracellular environment by actively pulling on it through cell-matrix contacts, which act as mechanosensors. In recent years, the sophisticated use of elastic substrates has shown that cells respond very sensitively to changes in effective stiffness in their environment, which results in a reorganization of the cytoskeleton in response to mechanical input. We develop a theoretical model to predict cellular self-organization in soft materials on a coarse grained level. Although cell organization in principle results from complex regulatory events inside the cell, the typical response to mechanical input seems to be a simple preference for large effective stiffness, possibly because force is more efficiently generated in a stiffer environment. The term effective stiffness comprises effects of both rigidity and prestrain in the environment. This observation can be turned into an optimization principle in elasticity theory. By specifying the cellular probing force pattern and by modeling the environment as a linear elastic medium, one can predict preferred cell orientation and position. Various examples for cell organization, which are of large practical interest, are considered theoretically: cells in external strain fields and cells close to boundaries or interfaces for different sample geometries and boundary conditions. For this purpose the elastic equations are solved exactly for an infinite space, an elastic half space and the elastic sphere. The predictions of the model are in excellent agreement with experiments for fibroblast cells, both on elastic substrates and in hydrogels. Mechanically active cells like fibroblasts could also interact elastically with each other. We calculate the optimal structures on elastic substrates as a function of material properties, cell density and the geometry of cell positioning, respectively, that allows each cell to maximize the effective stiffness in its environment due to the traction of all the other cells. Finally, we apply Monte Carlo simulations to study the effect of noise on cellular structure formation. The model not only contributes to a better understanding of many physiological situations. In the future it could also be used for biomedical applications to optimize protocols for artificial tissues with respect to sample geometry, boundary condition, material properties or cell density. T2 - Elastic interactions of cellular force patterns KW - Zellorganisation KW - Fokalkontakt KW - Zytoskelett KW - Punktdefekt KW - Mechanosensor KW - Mechanotransduktion KW - Substrat KW - Morphogenese KW - Kraftdipol KW - extrazelluläre Matr KW - cell organization KW - focal adhesion KW - point defect KW - substrate KW - cytoskeleton KW - mechanosensor KW - morphogenesis KW - mechanotransduction KW - force dipole KW - extra-cellul Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001767 ER - TY - THES A1 - Richter, Andreas T1 - Structure formation and fractionation in systems of colloidal rods T1 - Strukturbildung und Fraktionierung in Systemen aus kolloidalen Stäbchen N2 - Nowadays, colloidal rods can be synthesized in large amounts. The rods are typically cylindrically and their length ranges from several nanometers to a few micrometers. In solution, systems of colloidal rodlike molecules or aggregates can form liquid-crystalline phases with long-range orientational and spatial order. In the present work, we investigate structure formation and fractionation in systems of rodlike colloids with the help of Monte Carlo simulations in the NPT ensemble. Repulsive interactions can successfully be mimicked by the hard rod model, which has been studied extensively in the past. In many cases, attractive interactions like van der Waals or depletion forces cannot be neglected, however. In the first part of this work, the phase behavior of monodisperse attractive rods is characterized for different interaction strengths. Phase diagrams as a function of rod length and pressure are presented. Most systems of synthesized mesoscopic rods have a polydisperse length distribution as a consequence of the longitudinal growth process of the rods. For many technical and research applications, a rather small polydispersity is desired in order to have well defined material properties. The polydispersity can be reduced by a spatial demixing (fractionation) of long and short rods. Fractionation and structure formation is studied in a tridisperse and a polydisperse bulk suspension of rods. We observe that the resulting structures depend distinctly on the interaction strength. The fractionation in the system is strongly enhanced with increasing interaction strength. Suspensions are typically confined in a container. We also examine the influence of adjacent substrates in systems of tridisperse and polydisperse rod suspensions. Three different substrate types are studied in detail: a planar wall, a corrugated substrate, and a substrate with rectangular cavities. We analyze the fluid structure close to the substrate and substrate controlled fractionation. The spatial arrangement of long and short rods in front of the substrate depends sensitively on the substrate structure and the pressure. Rods with a predefined length are segregated at substrates with rectangular cavities. N2 - Kolloidale Stäbchen können mittlerweile in großen Mengen hergestellt werden. Die Form der Stäbchen ist in der Regel zylinderförmig und ihre Länge reicht von einigen Nanometern bis hin zu wenigen Mikrometern. Systeme aus kolloidalen stäbchenförmigen Molekülen oder Aggregaten können in Lösung flüssigkristalline Phasen mit langreichweitiger Orientierungs- und Raumordnung ausbilden. Im Rahmen dieser Arbeit werden Strukturbildung und Fraktionierung in Systemen aus stäbchenförmigen Kolloiden mittels Monte Carlo Simulationen im NPT Ensemble untersucht. Replusive Wechselwirkungen können erfolgreich durch harte Stäbchen modelliert werden. Dieses Modell wurde in der Vergangenheit bereits ausgiebig untersucht. Oft jedoch können attraktive Wechselwirkungen, wie z.~B. van der Waals- oder Depletionskräfte, nicht vernachlässigt werden. Im ersten Teil dieser Arbeit wird das Phasenverhalten von monodispersen attraktiven Stäbchen bei unterschiedlichen Wechselwirkungsstärken charakterisiert. Es werden Phasendiagramme bezüglich der Parameter Druck und Stäbchenlänge präsentiert. Die überwiegende Mehrzahl von Systemen aus synthetisierten mesoskopischen Stäbchen weist eine polydisperse Längenverteilung aufgrund des Längswachstums auf. Für eine Reihe technischer und wissenschaftlicher Anwendungen sind hingegen schmale Längenverteilungen wünschenswert, um wohl definierte Materialeigenschaften zu haben. Die Polydispersität kann durch räumliche Trennung (Fraktionierung) langer und kurzer Stäbchen reduziert werden. Fraktionierung und Strukturbildung werden in einer tridispersen und einer polydispersen Suspension untersucht. Wir beobachten, dass die entstehenden Strukturen ganz wesentlich von der Wechselwirkungsstärke abhängen. Der Grad der Fraktionierung wird durch Attraktivität stark erhöht. Suspensionen befinden sich typischerweise in Gefäsen. Wir untersuchen daher auch den Einfluss von begrenzenden Substraten auf Systeme aus tridispersen und polydispersen Stäbchensuspensionen. Drei verschiedene Substratstrukturen werden genauer betrachtet: Eine planare Wand, ein riefenförmiges Substrat und Substrate mit rechteckigen Aussparungen. Wir untersuchen die Flüssigkeitsstruktur in Substratnähe und substratinduzierte Fraktionierung. Die räumliche Anordnung von langen und kurzen Stäbchen hängt sehr sensibel von der Substratstruktur und dem Druck ab. Stäbchen mit einer festgelegten Länge werden an Substraten mit rechteckigen Aussparungen abgesondert. KW - Monte Carlo KW - Stäbchen KW - Polydispersität KW - attraktive Wechselwirkung KW - Substrat KW - Monte Carlo KW - rods KW - polydispersity KW - attractive interaction KW - substrate Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13090 ER -