TY - JOUR A1 - Laquai, Frederic A1 - Andrienko, Denis A1 - Deibel, Carsten A1 - Neher, Dieter T1 - Charge carrier generation, recombination, and extraction in polymer-fullerene bulk heterojunction organic solar cells JF - Elementary processes in organic photovoltaics N2 - In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer-fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency. KW - Charge extraction KW - Charge generation KW - Charge recombination KW - Organic solar cells KW - PBT7 KW - PBTTT KW - PCPDTBT Y1 - 2026 SN - 978-3-319-28338-8 SN - 978-3-319-28336-4 U6 - https://doi.org/10.1007/978-3-319-28338-8_11 SN - 0065-3195 VL - 272 SP - 267 EP - 291 PB - Springer CY - Berlin ER - TY - JOUR A1 - Moule, Adam J. A1 - Neher, Dieter A1 - Turner, Sarah T. ED - Ludwigs, S T1 - P3HT-Based solar cells: structural properties and photovoltaic performance JF - Advances in Polymer Science JF - Advances in Polymer Science N2 - Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene: phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT: PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications. KW - Free carrier generation KW - Non-geminate recombination KW - Organic solar cells Y1 - 2014 SN - 978-3-662-45145-8; 978-3-662-45144-1 U6 - https://doi.org/10.1007/12_2014_289 SN - 0065-3195 VL - 265 SP - 181 EP - 232 PB - Springer CY - Berlin ER -