TY - JOUR A1 - Mor, Selene A1 - Herzog, Marc A1 - Noack, Johannes A1 - Katayama, Naoyuki A1 - Nohara, Minoru A1 - Takagi, Hide A1 - Trunschke, Annette A1 - Mizokawa, Takashi A1 - Monney, Claude A1 - Stähler, Julia T1 - Inhibition of the photoinduced structural phase transition in the excitonic insulator Ta2NiSe5 JF - Physical review : B, Condensed matter and materials physics N2 - Femtosecond time-resolved midinfrared reflectivity is used to investigate the electron and phonon dynamics occurring at the direct band gap of the excitonic insulator Ta2NiSe5 below the critical temperature of its structural phase transition. We find that the phonon dynamics show a strong coupling to the excitation of free carriers at the Gamma point of the Brillouin zone. The optical response saturates at a critical excitation fluence F-C = 0.30 +/- 0.08 mJ/cm(2) due to optical absorption saturation. This limits the optical excitation density in Ta2NiSe5 so that the system cannot be pumped sufficiently strongly to undergo the structural change to the high-temperature phase. We thereby demonstrate that Ta2NiSe5 exhibits a blocking mechanism when pumped in the near-infrared regime, preventing a nonthermal structural phase transition. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevB.97.115154 SN - 2469-9950 SN - 2469-9969 VL - 97 IS - 11 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Mor, Selene A1 - Herzog, Marc A1 - Golez, Denis A1 - Werner, Philipp A1 - Eckstein, Martin A1 - Katayama, Naoyuki A1 - Nohara, Minoru A1 - Takagi, Hide A1 - Mizokawa, Takashi A1 - Monney, Claude A1 - Staehler, Julia T1 - Ultrafast Electronic Band Gap Control in an Excitonic Insulator JF - Physical review letters N2 - We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta2NiSe5 investigated by time-and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of F-C = 0.2 mJ cm(-2), the band gap narrows transiently, while it is enhanced above FC. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta2NiSe5, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta2NiSe5 with light on the femtosecond time scale. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevLett.119.086401 SN - 0031-9007 SN - 1079-7114 VL - 119 SP - 11559 EP - 11567 PB - American Physical Society CY - College Park ER -