TY - THES A1 - Bange, Sebastian T1 - Transient optical and electrical effects in polymeric semiconductors T1 - Transiente optische und elektrische Effekte in polymeren Halbeitern N2 - Classical semiconductor physics has been continuously improving electronic components such as diodes, light-emitting diodes, solar cells and transistors based on highly purified inorganic crystals over the past decades. Organic semiconductors, notably polymeric, are a comparatively young field of research, the first light-emitting diode based on conjugated polymers having been demonstrated in 1990. Polymeric semiconductors are of tremendous interest for high-volume, low-cost manufacturing ("printed electronics"). Due to their rather simple device structure mostly comprising only one or two functional layers, polymeric diodes are much more difficult to optimize compared to small-molecular organic devices. Usually, functions such as charge injection and transport are handled by the same material which thus needs to be highly optimized. The present work contributes to expanding the knowledge on the physical mechanisms determining device performance by analyzing the role of charge injection and transport on device efficiency for blue and white-emitting devices, based on commercially relevant spiro-linked polyfluorene derivatives. It is shown that such polymers can act as very efficient electron conductors and that interface effects such as charge trapping play the key role in determining the overall device efficiency. This work contributes to the knowledge of how charges drift through the polymer layer to finally find neutral emissive trap states and thus allows a quantitative prediction of the emission color of multichromophoric systems, compatible with the observed color shifts upon driving voltage and temperature variation as well as with electrical conditioning effects. In a more methodically oriented part, it is demonstrated that the transient device emission observed upon terminating the driving voltage can be used to monitor the decay of geminately-bound species as well as to determine trapped charge densities. This enables direct comparisons with numerical simulations based on the known properties of charge injection, transport and recombination. The method of charge extraction under linear increasing voltages (CELIV) is investigated in some detail, correcting for errors in the published approach and highlighting the role of non-idealized conditions typically present in experiments. An improved method is suggested to determine the field dependence of charge mobility in a more accurate way. Finally, it is shown that the neglect of charge recombination has led to a misunderstanding of experimental results in terms of a time-dependent mobility relaxation. N2 - Klassische Halbleiterphysik beschäftigt sich bereits seit mehreren Jahrzehnten erfolgreich mit der Weiterentwicklung elektronischer Bauteile wie Dioden, Leuchtdioden, Solarzellen und Transistoren auf der Basis von hochreinen anorganischen Kristallstrukturen. Im Gegensatz hierzu ist das Forschungsgebiet der organischen, insbesondere der polymeren Halbleiter noch recht jung: Die erste Leuchtdiode auf der Basis von "leitfähigem Plastik" wurde erst 1990 demonstriert. Polymere Halbleiter sind hierbei von besonderem Interesse für hochvolumige Anwendungen im Beleuchtungsbereich, da sie sich kostengünstig herstellen und verarbeiten lassen ("gedruckte Elektronik"). Die vereinfachte Herstellung bedingt dabei eine vergleichsweise geringe Komplexität der Bauteilstruktur und verringert die Optimierungsmöglichkeiten. Die vorliegende Arbeit leistet einen Beitrag zum Verständnis der Vorgänge an Grenzflächen und im Volumen von polymeren Leuchtdioden und ermöglicht damit ein besseres Verständnis der Bauteilfunktion. Im Fokus steht hierbei mit einem spiro-verknüpften Polyfluorenderivat ein kommerziell relevanter Polymertyp, der amorphe und hochgradig temperaturstabile Halbleiterschichten bildet. Ausgehend von einer Charakterisierung der Ladungstransporteigenschaften wird im Zusammenspiel mit numerischen Simulationen der Bauteilemission gezeigt, welche Rolle die polymeren und metallenen Kontaktelektroden für die Bauteilfunktion und -effizienz spielen. Des Weiteren wird ein weiß-emittierendes Polymer untersucht, bei dem die Mischung von blauen, grünen und roten Farbstoffen die Emissionsfarbe bestimmt. Hierbei wird das komplexe Wechselspiel aus Energieübertrag zwischen den Farbstoffen und direktem Ladungseinfang aufgeklärt. Es wird ein quantitatives Modell entwickelt, das die beobachtete Verschiebung der Emissionsfarbe unter wechselnden elektrischen Betriebsparametern erklärt und zusätzlich die Vorhersage von Temperatur- und elektrischen Konditionierungseffekten ermöglicht. Ausgehend von leicht messbaren Parametern wie Stromstärken und Emissionsspektren ermöglicht es Rückschlüsse auf mikroskopische Vorgänge wie die Diffusion von Ladungen hin zu Farbstoffen. Es wird gezeigt, dass im Gegensatz zu bisherigen Erkenntnissen der Ladungseinfang durch Drift im elektrischen Feld gegenüber der Diffusion überwiegt. In einem eher methodisch orientierten Teil zeigt die Arbeit, wie die beim Abschalten von Leuchtdioden beobachtbare Emission dazu verwendet werden kann, Erkenntnisse zu Ladungsdichten während der Betriebsphase zu gewinnen. Es wird abschließend nachgewiesen, dass eine gängige Methode zur Bestimmung von Ladungsbeweglichkeiten unter typischen Messbedingungen fehlerbehaftet ist. Ergebnisse, die bisher als eine zeitliche Relaxation der Beweglichkeit in ungeordneten Halbleitern interpretiert wurden, können damit auf die Rekombination von Ladungen während der Messung zurückgeführt werden. Es wird außerdem gezeigt, dass eine Modifikation der bei der Auswertung verwendeten Analytik die genauere Vermessung der Feldstärkeabhängigkeit der Beweglichkeit ermöglicht. KW - Organische Halbleiter KW - Ladungstransport KW - OLED KW - Polymer Electronics KW - Organic Semiconductors KW - Charge Transport KW - OLED KW - Polymerelektronik Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-36314 ER - TY - THES A1 - Steyrleuthner, Robert T1 - Korrelation von Struktur, optischen Eigenschaften und Ladungstransport in einem konjugierten Naphthalindiimid-Bithiophen Copolymer mit herausragender Elektronenmobilität T1 - Correlation of structure, optical properties and charge transport in a conjugated naphtalendiimide-bithiophene copolymer with outstanding electron mobility N2 - Organische Halbleiter besitzen neue, bemerkenswerte Materialeigenschaften, die sie für die grundlegende Forschung wie auch aktuelle technologische Entwicklung (bsw. org. Leuchtdioden, org. Solarzellen) interessant werden lassen. Aufgrund der starken konformative Freiheit der konjugierten Polymerketten führt die Vielzahl der möglichen Anordnungen und die schwache intermolekulare Wechselwirkung für gewöhnlich zu geringer struktureller Ordnung im Festkörper. Die Morphologie hat gleichzeitig direkten Einfluss auf die elektronische Struktur der organischen Halbleiter, welches sich meistens in einer deutlichen Reduktion der Ladungsträgerbeweglichkeit gegenüber den anorganischen Verwandten zeigt. So stellt die Beweglichkeit der Ladungen im Halbleiter einen der limitierenden Faktoren für die Leistungsfähigkeit bzw. den Wirkungsgrad von funktionellen organischen Bauteilen dar. Im Jahr 2009 wurde ein neues auf Naphthalindiimid und Bithiophen basierendes Dornor/Akzeptor Copolymer vorgestellt [P(NDI2OD‑T2)], welches sich durch seine außergewöhnlich hohe Ladungsträgermobilität auszeichnet. In dieser Arbeit wird die Ladungsträgermobilität in P(NDI2OD‑T2) bestimmt, und der Transport durch eine geringe energetischer Unordnung charakterisiert. Obwohl dieses Material zunächst als amorph beschrieben wurde zeigt eine detaillierte Analyse der optischen Eigenschaften von P(NDI2OD‑T2), dass bereits in Lösung geordnete Vorstufen supramolekularer Strukturen (Aggregate) existieren. Quantenchemische Berechnungen belegen die beobachteten spektralen Änderungen. Mithilfe der NMR-Spektroskopie kann die Bildung der Aggregate unabhängig von optischer Spektroskopie bestätigt werden. Die Analytische Ultrazentrifugation an P(NDI2OD‑T2) Lösungen legt nahe, dass sich die Aggregation innerhalb der einzelnen Ketten unter Reduktion des hydrodynamischen Radius vollzieht. Die Ausbildung supramolekularen Strukturen nimmt auch eine signifikante Rolle bei der Filmbildung ein und verhindert gleichzeitig die Herstellung amorpher P(NDI2OD‑T2) Filme. Durch chemische Modifikation der P(NDI2OD‑T2)-Kette und verschiedener Prozessierungs-Methoden wurde eine Änderung des Kristallinitätsgrades und gleichzeitig der Orientierung der kristallinen Domänen erreicht und mittels Röntgenbeugung quantifiziert. In hochauflösenden Elektronenmikroskopie-Messungen werden die Netzebenen und deren Einbettung in die semikristallinen Strukturen direkt abgebildet. Aus der Kombination der verschiedenen Methoden erschließt sich ein Gesamtbild der Nah- und Fernordnung in P(NDI2OD‑T2). Über die Messung der Elektronenmobilität dieser Schichten wird die Anisotropie des Ladungstransports in den kristallographischen Raumrichtungen von P(NDI2OD‑T2) charakterisiert und die Bedeutung der intramolekularen Wechselwirkung für effizienten Ladungstransport herausgearbeitet. Gleichzeitig wird deutlich, wie die Verwendung von größeren und planaren funktionellen Gruppen zu höheren Ladungsträgermobilitäten führt, welche im Vergleich zu klassischen semikristallinen Polymeren weniger sensitiv auf die strukturelle Unordnung im Film sind. N2 - Organic semiconductors are in the focus of recent research and technological development (eg. for organic light-emitting diodes and solar cells) due to their specific and outstanding material properties. The strong conformational freedom of conjugated polymer chains usually leads to a large number of possible geometric arrangements while weak intermolecular interactions additionally lead to poor structural order in the solid state. At the same time the morphology of those systems has direct influence on the electronic structure of the organic semiconductor which is accompanied by a significant reduction of the charge carrier mobility in contrast to their inorganic counterparts. In that way the transport of charges within the semiconductor represents one of the main limiting factors regarding the performance and efficiency of functional organic devices. In 2009 Facchetti and coworkers presented a novel conjugated donor/acceptor copolymer based on naphthalene diimide and bithiophene [P(NDI2OD‑T2)] which was characterized by an outstanding charge carrier mobility. In this work the mobility of electrons and holes in the bulk of P(NDI2OD‑T2) is determined by single carrier devices and the time-of-flight technique. The results imply a low energetic disorder in these polymer layers. While the material was initially expected to be mainly amorphous, a detailed study of the photophysical properties of P(NDI2OD‑T2) shows that precursors of supramolecular assemblies (aggregates) are already formed in polymer solution. Quantum-chemical calculations support the occurring optical changes. NMR spectroscopy was applied to independently prove the formation of chain aggregates in commonly used organic solvents. The investigation of P(NDI2OD‑T2) solutions by analytical ultracentrifugation implies that aggregation mainly proceeds within single polymer chains by reduction of the hydrodynamic radius. To understand the influence of the chemical structure, pre-aggregation and crystal packing of conventional regioregular P(NDI2OD-T2) on the charge transport, the corresponding regioirregular polymer RI-P(NDI2OD-T2) was synthesized. By combining optical, X-ray, and transmission electron microscopy data, a quantitatively characterization of the aggregation, crystallization, and backbone orientation of all of the polymer films was possible, which was then correlated to the electron mobilities in electron-only diodes. The anisotropy of the charge transport along the different crystallographic directions is demonstrated and how the mobility depends on π-stacking but is insensitive to the degree or coherence of lamellar stacking. The comparison between the regioregular and regioirregular polymers also shows how the use of large planar functional groups leads to improved charge transport, with mobilities that are less affected by chemical and structural disorder with respect to classic semicrystalline polymers such as poly(3-hexylthiophene). KW - organische Halbleiter KW - Ladungstransport KW - Solarzellen KW - Polymere KW - Photophysik KW - organic semiconductor KW - charge transport KW - solar cells KW - polymers KW - photo physics Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-71413 ER - TY - THES A1 - Schubert, Marcel T1 - Elementary processes in layers of electron transporting Donor-acceptor copolymers : investigation of charge transport and application to organic solar cells T1 - Elementare Prozesse in Schichten elektronen-transportierender Donator-Akzeptor-Copolymere : Untersuchung des Ladungstransports und Anwendung in Organischen Solarzellen N2 - Donor-acceptor (D-A) copolymers have revolutionized the field of organic electronics over the last decade. Comprised of a electron rich and an electron deficient molecular unit, these copolymers facilitate the systematic modification of the material's optoelectronic properties. The ability to tune the optical band gap and to optimize the molecular frontier orbitals as well as the manifold of structural sites that enable chemical modifications has created a tremendous variety of copolymer structures. Today, these materials reach or even exceed the performance of amorphous inorganic semiconductors. Most impressively, the charge carrier mobility of D-A copolymers has been pushed to the technologically important value of 10 cm^{2}V^{-1}s^{-1}. Furthermore, owed to their enormous variability they are the material of choice for the donor component in organic solar cells, which have recently surpassed the efficiency threshold of 10%. Because of the great number of available D-A copolymers and due to their fast chemical evolution, there is a significant lack of understanding of the fundamental physical properties of these materials. Furthermore, the complex chemical and electronic structure of D-A copolymers in combination with their semi-crystalline morphology impede a straightforward identification of the microscopic origin of their superior performance. In this thesis, two aspects of prototype D-A copolymers were analysed. These are the investigation of electron transport in several copolymers and the application of low band gap copolymers as acceptor component in organic solar cells. In the first part, the investigation of a series of chemically modified fluorene-based copolymers is presented. The charge carrier mobility varies strongly between the different derivatives, although only moderate structural changes on the copolymers structure were made. Furthermore, rather unusual photocurrent transients were observed for one of the copolymers. Numerical simulations of the experimental results reveal that this behavior arises from a severe trapping of electrons in an exponential distribution of trap states. Based on the comparison of simulation and experiment, the general impact of charge carrier trapping on the shape of photo-CELIV and time-of-flight transients is discussed. In addition, the high performance naphthalenediimide (NDI)-based copolymer P(NDI2OD-T2) was characterized. It is shown that the copolymer posses one of the highest electron mobilities reported so far, which makes it attractive to be used as the electron accepting component in organic photovoltaic cells.\par Solar cells were prepared from two NDI-containing copolymers, blended with the hole transporting polymer P3HT. I demonstrate that the use of appropriate, high boiling point solvents can significantly increase the power conversion efficiency of these devices. Spectroscopic studies reveal that the pre-aggregation of the copolymers is suppressed in these solvents, which has a strong impact on the blend morphology. Finally, a systematic study of P3HT:P(NDI2OD-T2) blends is presented, which quantifies the processes that limit the efficiency of devices. The major loss channel for excited states was determined by transient and steady state spectroscopic investigations: the majority of initially generated electron-hole pairs is annihilated by an ultrafast geminate recombination process. Furthermore, exciton self-trapping in P(NDI2OD-T2) domains account for an additional reduction of the efficiency. The correlation of the photocurrent to microscopic morphology parameters was used to disclose the factors that limit the charge generation efficiency. Our results suggest that the orientation of the donor and acceptor crystallites relative to each other represents the main factor that determines the free charge carrier yield in this material system. This provides an explanation for the overall low efficiencies that are generally observed in all-polymer solar cells. N2 - Donator-Akzeptor (D-A) Copolymere haben das Feld der organischen Elektronik revolutioniert. Bestehend aus einer elektronen-reichen und einer elektronen-armen molekularen Einheit,ermöglichen diese Polymere die systematische Anpassung ihrer optischen und elektronischen Eigenschaften. Zu diesen zählen insbesondere die optische Bandlücke und die Lage der Energiezustände. Dabei lassen sie sich sehr vielseitig chemisch modifizieren, was zu einer imensen Anzahl an unterschiedlichen Polymerstrukturen geführt hat. Dies hat entscheidend dazu beigetragen, dass D-A-Copolymere heute in Bezug auf ihren Ladungstransport die Effizienz von anorganischen Halbleitern erreichen oder bereits übetreffen. Des Weiteren lassen sich diese Materialien auch hervorragend in Organischen Solarzellen verwenden, welche jüngst eine Effizienz von über 10% überschritten haben. Als Folge der beträchtlichen Anzahl an unterschiedlichen D-A-Copolymeren konnte das physikalische Verständnis ihrer Eigenschaften bisher nicht mit dieser rasanten Entwicklung Schritt halten. Dies liegt nicht zuletzt an der komplexen chemischen und mikroskopischen Struktur im Film, in welchem die Polymere in einem teil-kristallinen Zustand vorliegen. Um ein besseres Verständnis der grundlegenden Funktionsweise zu erlangen, habe ich in meiner Arbeit sowohl den Ladungstransport als auch die photovoltaischen Eigenschaften einer Reihe von prototypischen, elektronen-transportierenden D-A Copolymeren beleuchtet. Im ersten Teil wurden Copolymere mit geringfügigen chemischen Variationen untersucht. Diese Variationen führen zu einer starken Änderung des Ladungstransportverhaltens. Besonders auffällig waren hier die Ergebnisse eines Polymers, welches sehr ungewöhnliche transiente Strom-Charakteristiken zeigte. Die nähere Untersuchung ergab, dass in diesem Material elektrisch aktive Fallenzustände existieren. Dieser Effekt wurde dann benutzt um den Einfluss solcher Fallen auf transiente Messung im Allgemeinen zu beschreiben. Zusätzlich wurde der Elektronentransport in einem neuartigen Copolymer untersucht, welche die bis dato größte gemesse Elektronenmobilität für konjugierte Polymere zeigte. Darauf basierend wurde versucht, die neuartigen Copolymere als Akzeptoren in Organischen Solarzellen zu implementieren. Die Optimierung dieser Zellen erwies sich jedoch als schwierig, konnte aber erreicht werden, indem die Lösungseigenschaften der Copolymere untersucht und systematisch gesteuert wurden. Im Weiteren werden umfangreiche Untersuchungen zu den relevanten Verlustprozessen gezeigt. Besonders hervorzuheben ist hier die Beobachtung, dass hohe Effizienzen nur bei einer coplanaren Packung der Donator/Akzeptor-Kristalle erreicht werden können. Diese Struktureigenschaft wird hier zum ersten Mal beschrieben und stellt einen wichtigen Erkenntnisgewinn zum Verständnis von Polymersolarzellen dar. KW - Organische Solarzellen KW - Ladungstransport KW - Donator-Akzeptor-Copolymere KW - Alternative Akzeptorpolymere KW - Polymer-Kristalle KW - organic solar cells KW - charge transport KW - Donor-acceptor copolymers KW - alternative electron acceptors KW - polymer crystal orientation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70791 ER -