TY - JOUR A1 - Leitner, T. A1 - Josefsson, Ida A1 - Mazza, T. A1 - Miedema, Piter S. A1 - Schröder, H. A1 - Beye, Martin A1 - Kunnus, Kristjan A1 - Schreck, S. A1 - Düsterer, Stefan A1 - Föhlisch, Alexander A1 - Meyer, M. A1 - Odelius, Michael A1 - Wernet, Philippe T1 - Time-resolved electron spectroscopy for chemical analysis of photodissociation BT - Photoelectron spectra of Fe(CO)(5), Fe(CO)(4), and Fe(CO)(3) JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - The prototypical photoinduced dissociation of Fe(CO)(5) in the gas phase is used to test time-resolved x-ray photoelectron spectroscopy for studying photochemical reactions. Upon one-photon excitation at 266 nm, Fe(CO)(5) successively dissociates to Fe(CO)(4) and Fe(CO)(3) along a pathway where both fragments retain the singlet multiplicity of Fe(CO)(5). The x-ray free-electron laser FLASH is used to probe the reaction intermediates Fe(CO)(4) and Fe(CO)(3) with time-resolved valence and core-level photoelectron spectroscopy, and experimental results are interpreted with ab initio quantum chemical calculations. Changes in the valence photoelectron spectra are shown to reflect changes in the valenceorbital interactions upon Fe-CO dissociation, thereby validating fundamental theoretical concepts in Fe-CO bonding. Chemical shifts of CO 3 sigma inner-valence and Fe 3 sigma core-level binding energies are shown to correlate with changes in the coordination number of the Fe center. We interpret this with coordination-dependent charge localization and core-hole screening based on calculated changes in electron densities upon core-hole creation in the final ionic states. This extends the established capabilities of steady-state electron spectroscopy for chemical analysis to time-resolved investigations. It could also serve as a benchmark for howcharge and spin density changes in molecular dissociation and excited-state dynamics are expressed in valence and core-level photoelectron spectroscopy. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5035149 SN - 0021-9606 SN - 1089-7690 VL - 149 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Kunnus, Kristjan A1 - Josefsson, Ida A1 - Schreck, Simon A1 - Quevedo, Wilson A1 - Miedema, Piter S. A1 - Techert, Simone A1 - de Groot, Frank M. F. A1 - Odelius, Michael A1 - Wernet, Philippe A1 - Föhlisch, Alexander T1 - From Ligand Fields to Molecular Orbitals: Probing the Local Valence Electronic Structure of Ni2+ in Aqueous Solution with Resonant Inelastic X-ray Scattering JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Bonding of the Ni2+(aq) complex is investigated with an unprecedented combination of resonant inelastic X-ray scattering (RIXS) measurements and ab initio calculations at the Ni L absorption edge. The spectra directly reflect the relative energies of the ligand-field and charge-transfer valence-excited states. They give element-specific access with atomic resolution to the ground-state electronic structure of the complex and allow quantification of ligand-field strength and 3d-3d electron correlation interactions in the Ni2+(aq) complex. The experimentally determined ligand-field strength is 10Dq = 1.1 eV. This and the Racah parameters characterizing 3d-3d Coulomb interactions B = 0.13 eV and C = 0.42 eV as readily derived from the measured energies match very well with the results from UV-vis spectroscopy. Our results demonstrate how L-edge RIXS can be used to complement existing spectroscopic tools for the investigation of bonding in 3d transition-metal coordination compounds in solution. The ab initio RASPT2 calculation is successfully used to simulate the L-edge RIXS spectra. Y1 - 2013 U6 - https://doi.org/10.1021/jp4100813 SN - 1520-6106 VL - 117 IS - 51 SP - 16512 EP - 16521 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wernet, Philippe A1 - Kunnus, Kristjan A1 - Josefsson, Ida A1 - Rajkovic, Ivan A1 - Quevedo, Wilson A1 - Beye, Martin A1 - Schreck, Simon A1 - Gruebel, S. A1 - Scholz, Mirko A1 - Nordlund, Dennis A1 - Zhang, Wenkai A1 - Hartsock, Robert W. A1 - Schlotter, William F. A1 - Turner, Joshua J. A1 - Kennedy, Brian A1 - Hennies, Franz A1 - de Groot, Frank M. F. A1 - Gaffney, Kelly J. A1 - Techert, Simone A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution JF - Nature : the international weekly journal of science N2 - Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion(1,2). Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site(3-11) that need to be controlled to optimize complexes for photocatalytic hydrogen production(8) and selective carbon-hydrogen bond activation(9-11). An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)(5) in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)(4) species, a homogeneous catalyst(12,13) with an electron deficiency at the Fe centre(14,15), in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)(5) (refs 4, 16-20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes. Y1 - 2015 U6 - https://doi.org/10.1038/nature14296 SN - 0028-0836 SN - 1476-4687 VL - 520 IS - 7545 SP - 78 EP - 81 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Kunnus, Kristjan A1 - Josefsson, Ida A1 - Rajkovic, Ivan A1 - Schreck, Simon A1 - Quevedo, Wilson A1 - Beye, Martin A1 - Grübel, Sebastian A1 - Scholz, Mirko A1 - Nordlund, Dennis A1 - Zhang, Wenkai A1 - Hartsock, Robert W. A1 - Gaffney, Kelly J. A1 - Schlotter, William F. A1 - Turner, Joshua J. A1 - Kennedy, Brian A1 - Hennies, Franz A1 - Techert, Simone A1 - Wernet, Philippe A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics JF - NEW JOURNAL OF PHYSICS N2 - Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)(5) in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given-which will be covered experimentally by upcoming transform-limited x-ray sources. KW - ultrafast photochemistry KW - excited state selectivity KW - anti-Stokes resonant x-ray raman scattering KW - free electron lasers KW - resonant inelastic x-ray scattering Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/10/103011 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Wernet, Philippe A1 - Leitner, T. A1 - Josefsson, Ida A1 - Mazza, T. A1 - Miedema, P. S. A1 - Schroder, H. A1 - Beye, Martin A1 - Kunnus, K. A1 - Schreck, S. A1 - Radcliffe, P. A1 - Dusterer, S. A1 - Meyer, M. A1 - Odelius, Michael A1 - Fohlisch, Alexander T1 - Communication: Direct evidence for sequential dissociation of gas-phase Fe(CO)(5) via a singlet pathway upon excitation at 266 nm JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We prove the hitherto hypothesized sequential dissociation of Fe(CO)(5) in the gas phase upon photoexcitation at 266 nm via a singlet pathway with time-resolved valence and core-level photoelectron spectroscopy with an x-ray free-electron laser. Valence photoelectron spectra are used to identify free CO molecules and to determine the time constants of stepwise dissociation to Fe(CO)(4) within the temporal resolution of the experiment and further to Fe(CO)(3) within 3 ps. Fe 3p core-level photoelectron spectra directly reflect the singlet spin state of the Fe center in Fe(CO)(5), Fe(CO)(4), and Fe(CO)(3) showing that the dissociation exclusively occurs along a singlet pathway without triplet-state contribution. Our results are important for assessing intra- and intermolecular relaxation processes in the photodissociation dynamics of the prototypical Fe(CO)(5) complex in the gas phase and in solution, and they establish time-resolved core-level photoelectron spectroscopy as a powerful tool for determining the multiplicity of transition metals in photochemical reactions of coordination complexes. Published by AIP Publishing. Y1 - 2017 U6 - https://doi.org/10.1063/1.4984774 SN - 0021-9606 SN - 1089-7690 VL - 146 PB - American Institute of Physics CY - Melville ER -