TY - THES A1 - Glander, Tassilo T1 - Multi-scale representations of virtual 3D city models T1 - Maßstabsabhängige Repräsentationen virtueller 3D-Stadtmodelle N2 - Virtual 3D city and landscape models are the main subject investigated in this thesis. They digitally represent urban space and have many applications in different domains, e.g., simulation, cadastral management, and city planning. Visualization is an elementary component of these applications. Photo-realistic visualization with an increasingly high degree of detail leads to fundamental problems for comprehensible visualization. A large number of highly detailed and textured objects within a virtual 3D city model may create visual noise and overload the users with information. Objects are subject to perspective foreshortening and may be occluded or not displayed in a meaningful way, as they are too small. In this thesis we present abstraction techniques that automatically process virtual 3D city and landscape models to derive abstracted representations. These have a reduced degree of detail, while essential characteristics are preserved. After introducing definitions for model, scale, and multi-scale representations, we discuss the fundamentals of map generalization as well as techniques for 3D generalization. The first presented technique is a cell-based generalization of virtual 3D city models. It creates abstract representations that have a highly reduced level of detail while maintaining essential structures, e.g., the infrastructure network, landmark buildings, and free spaces. The technique automatically partitions the input virtual 3D city model into cells based on the infrastructure network. The single building models contained in each cell are aggregated to abstracted cell blocks. Using weighted infrastructure elements, cell blocks can be computed on different hierarchical levels, storing the hierarchy relation between the cell blocks. Furthermore, we identify initial landmark buildings within a cell by comparing the properties of individual buildings with the aggregated properties of the cell. For each block, the identified landmark building models are subtracted using Boolean operations and integrated in a photo-realistic way. Finally, for the interactive 3D visualization we discuss the creation of the virtual 3D geometry and their appearance styling through colors, labeling, and transparency. We demonstrate the technique with example data sets. Additionally, we discuss applications of generalization lenses and transitions between abstract representations. The second technique is a real-time-rendering technique for geometric enhancement of landmark objects within a virtual 3D city model. Depending on the virtual camera distance, landmark objects are scaled to ensure their visibility within a specific distance interval while deforming their environment. First, in a preprocessing step a landmark hierarchy is computed, this is then used to derive distance intervals for the interactive rendering. At runtime, using the virtual camera distance, a scaling factor is computed and applied to each landmark. The scaling factor is interpolated smoothly at the interval boundaries using cubic Bézier splines. Non-landmark geometry that is near landmark objects is deformed with respect to a limited number of landmarks. We demonstrate the technique by applying it to a highly detailed virtual 3D city model and a generalized 3D city model. In addition we discuss an adaptation of the technique for non-linear projections and mobile devices. The third technique is a real-time rendering technique to create abstract 3D isocontour visualization of virtual 3D terrain models. The virtual 3D terrain model is visualized as a layered or stepped relief. The technique works without preprocessing and, as it is implemented using programmable graphics hardware, can be integrated with minimal changes into common terrain rendering techniques. Consequently, the computation is done in the rendering pipeline for each vertex, primitive, i.e., triangle, and fragment. For each vertex, the height is quantized to the nearest isovalue. For each triangle, the vertex configuration with respect to their isovalues is determined first. Using the configuration, the triangle is then subdivided. The subdivision forms a partial step geometry aligned with the triangle. For each fragment, the surface appearance is determined, e.g., depending on the surface texture, shading, and height-color-mapping. Flexible usage of the technique is demonstrated with applications from focus+context visualization, out-of-core terrain rendering, and information visualization. This thesis presents components for the creation of abstract representations of virtual 3D city and landscape models. Re-using visual language from cartography, the techniques enable users to build on their experience with maps when interpreting these representations. Simultaneously, characteristics of 3D geovirtual environments are taken into account by addressing and discussing, e.g., continuous scale, interaction, and perspective. N2 - Gegenstand der Arbeit sind virtuelle 3D-Stadt- und Landschaftsmodelle, die den städtischen Raum in digitalen Repräsentationen abbilden. Sie werden in vielfältigen Anwendungen und zu unterschiedlichen Zwecken eingesetzt. Dabei ist die Visualisierung ein elementarer Bestandteil dieser Anwendungen. Durch realitätsnahe Darstellung und hohen Detailgrad entstehen jedoch zunehmend fundamentale Probleme für eine verständliche Visualisierung. So führt beispielsweise die hohe Anzahl von detailliert ausmodellierten und texturierten Objekten eines virtuellen 3D-Stadtmodells zu Informationsüberflutung beim Betrachter. In dieser Arbeit werden Abstraktionsverfahren vorgestellt, die diese Probleme behandeln. Ziel der Verfahren ist die automatische Transformation virtueller 3D-Stadt- und Landschaftsmodelle in abstrakte Repräsentationen, die bei reduziertem Detailgrad wichtige Charakteristika erhalten. Nach der Einführung von Grundbegriffen zu Modell, Maßstab und Mehrfachrepräsentationen werden theoretische Grundlagen zur Generalisierung von Karten sowie Verfahren zur 3D-Generalisierung betrachtet. Das erste vorgestellte Verfahren beschreibt die zellbasierte Generalisierung von virtuellen 3DStadtmodellen. Es erzeugt abstrakte Repräsentationen, die drastisch im Detailgrad reduziert sind, erhält dabei jedoch die wichtigsten Strukturen, z.B. das Infrastrukturnetz, Landmarkengebäude und Freiflächen. Dazu wird in einem vollautomatischen Verfahren das Eingabestadtmodell mithilfe des Infrastrukturnetzes in Zellen zerlegt. Pro Zelle wird abstrakte Gebäudegeometrie erzeugt, indem die enthaltenen Einzelgebäude mit ihren Eigenschaften aggregiert werden. Durch Berücksichtigung gewichteter Elemente des Infrastrukturnetzes können Zellblöcke auf verschiedenen Hierarchieebenen berechnet werden. Weiterhin werden Landmarken gesondert berücksichtigt: Anhand statistischer Abweichungen der Eigenschaften der Einzelgebäudes von den aggregierten Eigenschaften der Zelle werden Gebäude gegebenenfalls als initiale Landmarken identifiziert. Schließlich werden die Landmarkengebäude aus den generalisierten Blöcken mit Booleschen Operationen ausgeschnitten und realitätsnah dargestellt. Die Ergebnisse des Verfahrens lassen sich in interaktiver 3D-Darstellung einsetzen. Das Verfahren wird beispielhaft an verschiedenen Datensätzen demonstriert und bezüglich der Erweiterbarkeit diskutiert. Das zweite vorgestellte Verfahren ist ein Echtzeit-Rendering-Verfahren für geometrische Hervorhebung von Landmarken innerhalb eines virtuellen 3D-Stadtmodells: Landmarkenmodelle werden abhängig von der virtuellen Kameradistanz vergrößert, so dass sie innerhalb eines spezifischen Entfernungsintervalls sichtbar bleiben; dabei wird ihre Umgebung deformiert. In einem Vorverarbeitungsschritt wird eine Landmarkenhierarchie bestimmt, aus der die Entfernungsintervalle für die interaktive Darstellung abgeleitet werden. Zur Laufzeit wird anhand der virtuellen Kameraentfernung je Landmarke ein dynamischer Skalierungsfaktor bestimmt, der das Landmarkenmodell auf eine sichtbare Größe skaliert. Dabei wird der Skalierungsfaktor an den Intervallgrenzen durch kubisch interpoliert. Für Nicht-Landmarkengeometrie in der Umgebung wird die Deformation bezüglich einer begrenzten Menge von Landmarken berechnet. Die Eignung des Verfahrens wird beispielhaft anhand verschiedener Datensätze demonstriert und bezüglich der Erweiterbarkeit diskutiert. Das dritte vorgestellte Verfahren ist ein Echtzeit-Rendering-Verfahren, das eine abstrakte 3D-Isokonturen-Darstellung von virtuellen 3D-Geländemodellen erzeugt. Für das Geländemodell wird eine Stufenreliefdarstellung für eine Menge von nutzergewählten Höhenwerten erzeugt. Das Verfahren arbeitet ohne Vorverarbeitung auf Basis programmierbarer Grafikkarten-Hardware. Entsprechend erfolgt die Verarbeitung in der Prozesskette pro Geometrieknoten, pro Dreieck, und pro Bildfragment. Pro Geometrieknoten wird zunächst die Höhe auf den nächstliegenden Isowert quantisiert. Pro Dreieck wird dann die Konfiguration bezüglich der Isowerte der drei Geometrieknoten bestimmt. Anhand der Konfiguration wird eine geometrische Unterteilung vorgenommen, so dass ein Stufenausschnitt entsteht, der dem aktuellen Dreieck entspricht. Pro Bildfragment wird schließlich die finale Erscheinung definiert, z.B. anhand von Oberflächentextur, durch Schattierung und Höheneinfärbung. Die vielfältigen Einsatzmöglichkeiten werden mit verschiedenen Anwendungen demonstriert. Die Arbeit stellt Bausteine für die Erzeugung abstrakter Darstellungen von virtuellen 3D-Stadt und Landschaftsmodellen vor. Durch die Orientierung an kartographischer Bildsprache können die Nutzer auf bestehende Erfahrungen bei der Interpretation zurückgreifen. Dabei werden die charakteristischen Eigenschaften 3D geovirtueller Umgebungen berücksichtigt, indem z.B. kontinuierlicher Maßstab, Interaktion und Perspektive behandelt und diskutiert werden. KW - Generalisierung KW - virtuelle 3D-Stadtmodelle KW - Gebäudemodelle KW - Landmarken KW - Geländemodelle KW - generalization KW - virtual 3D city models KW - building models KW - landmarks KW - terrain models Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-64117 ER -