TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - A compilation of Brewka and Eiter's approach to prioritizationtion Y1 - 2000 SN - 3-540-41131-3 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - Logic programs with compiled preferences Y1 - 2000 SN - 1-58603-013-2 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - Logic programs with compiled preferences Y1 - 2000 UR - http://xxx.lanl.gov/abs/cs.AI/0003028 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - A compiler for ordered logic programs Y1 - 2000 UR - http://arxiv.org/abs/cs.AI/0003024 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - On computing solutions to belief change scenarios Y1 - 2001 SN - 3-540- 42464-4 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - A generic compiler for ordered logic programs Y1 - 2001 SN - 3-540-42593-4 ER - TY - JOUR A1 - Pearce, David A1 - Sarsakov, Vladimir A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - A polynomial translation of logic programs with nested expressions into disjunctive logic programs Y1 - 2002 SN - 3-540-43930-7 ER - TY - JOUR A1 - Besnard, Philippe A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Paraconsistent reasoning via quantified boolean formulas Y1 - 2002 SN - 3-540-44190-5 ER - TY - JOUR A1 - Pearce, David A1 - Sarsakov, Vladimir A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - A polynomial translation of logic programs with nested expressions into disjunctive logic programs : preliminary report Y1 - 2002 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Wang, Kewen T1 - Towards a classification of preference handling approaches in nonmonotonic reasoning Y1 - 2002 SN - 1-577-35166-5 ER - TY - JOUR A1 - Besnard, Philippe A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Paraconsistent reasoning via quantified boolean formulas : Part II: Circumscribing inconsistent theories Y1 - 2003 SN - 3-540- 409494-5 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - A framework for compiling preferences in logic programs Y1 - 2003 ER - TY - JOUR A1 - Sarsakov, Vladimir A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - A compiler for nested logic programming Y1 - 2004 SN - 3-540- 20721-x ER - TY - JOUR A1 - Linke, Thomas A1 - Tompits, Hans A1 - Woltran, Stefan T1 - On Acyclic and head-cycle free nested logic programs Y1 - 2004 SN - 3-540-22671-01 ER - TY - JOUR A1 - Linke, Thomas A1 - Tompits, Hans A1 - Woltran, Stefan T1 - On acyclic and head-cycle free nested logic programs Y1 - 2004 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - On Computing belief change operations using quantifield boolean formulas N2 - In this paper, we show how an approach to belief revision and belief contraction can be axiomatized by means of quantified Boolean formulas. Specifically, we consider the approach of belief change scenarios, a general framework that has been introduced for expressing different forms of belief change. The essential idea is that for a belief change scenario (K, R, C), the set of formulas K, representing the knowledge base, is modified so that the sets of formulas R and C are respectively true in, and consistent with the result. By restricting the form of a belief change scenario, one obtains specific belief change operators including belief revision, contraction, update, and merging. For both the general approach and for specific operators, we give a quantified Boolean formula such that satisfying truth assignments to the free variables correspond to belief change extensions in the original approach. Hence, we reduce the problem of determining the results of a belief change operation to that of satisfiability. This approach has several benefits. First, it furnishes an axiomatic specification of belief change with respect to belief change scenarios. This then leads to further insight into the belief change framework. Second, this axiomatization allows us to identify strict complexity bounds for the considered reasoning tasks. Third, we have implemented these different forms of belief change by means of existing solvers for quantified Boolean formulas. As well, it appears that this approach may be straightforwardly applied to other specific approaches to belief change Y1 - 2004 SN - 0955-792X ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - Domain-specific preference for causal reasoning and planning Y1 - 2004 SN - 1-577-35201-7 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Wang, Kewen T1 - A classification and survey of preference handling approchaches in nonmonotonic reasoning N2 - In recent years, there has been a large amount of disparate work concerning the representation and reasoning with qualitative preferential information by means of approaches to nonmonotonic reasoning. Given the variety of underlying systems, assumptions, motivations, and intuitions, it is difficult to compare or relate one approach with another. Here, we present an overview and classification for approaches to dealing with preference. A set of criteria for classifying approaches is given, followed by a set of desiderata that an approach might be expected to satisfy. A comprehensive set of approaches is subsequently given and classified with respect to these sets of underlying principles Y1 - 2004 SN - 0824-7935 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - A Preference-Based Framework for Updating logic Programs : preliminary reports Y1 - 2006 UR - http://www.easychair.org/FLoC-06/PREFS-preproceedings.pdf ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - An Extended Query language for action languages (and its application to aggregates and preferences) Y1 - 2006 UR - http://www2.in.tu-clausthal.de/~tmbehrens/NMR_Proc_TR4.pdf ER -