TY - JOUR A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Answer set programming unleashed! JF - Künstliche Intelligenz N2 - Answer Set Programming faces an increasing popularity for problem solving in various domains. While its modeling language allows us to express many complex problems in an easy way, its solving technology enables their effective resolution. In what follows, we detail some of the key factors of its success. Answer Set Programming [ASP; Brewka et al. Commun ACM 54(12):92–103, (2011)] is seeing a rapid proliferation in academia and industry due to its easy and flexible way to model and solve knowledge-intense combinatorial (optimization) problems. To this end, ASP offers a high-level modeling language paired with high-performance solving technology. As a result, ASP systems provide out-off-the-box, general-purpose search engines that allow for enumerating (optimal) solutions. They are represented as answer sets, each being a set of atoms representing a solution. The declarative approach of ASP allows a user to concentrate on a problem’s specification rather than the computational means to solve it. This makes ASP a prime candidate for rapid prototyping and an attractive tool for teaching key AI techniques since complex problems can be expressed in a succinct and elaboration tolerant way. This is eased by the tuning of ASP’s modeling language to knowledge representation and reasoning (KRR). The resulting impact is nicely reflected by a growing range of successful applications of ASP [Erdem et al. AI Mag 37(3):53–68, 2016; Falkner et al. Industrial applications of answer set programming. K++nstliche Intelligenz (2018)] Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0550-z SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 105 EP - 108 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Gebser, Martin A1 - Obermeier, Philipp A1 - Schaub, Torsten H. A1 - Ratsch-Heitmann, Michel A1 - Runge, Mario T1 - Routing driverless transport vehicles in car assembly with answer set programming JF - Theory and practice of logic programming N2 - Automated storage and retrieval systems are principal components of modern production and warehouse facilities. In particular, automated guided vehicles nowadays substitute human-operated pallet trucks in transporting production materials between storage locations and assembly stations. While low-level control systems take care of navigating such driverless vehicles along programmed routes and avoid collisions even under unforeseen circumstances, in the common case of multiple vehicles sharing the same operation area, the problem remains how to set up routes such that a collection of transport tasks is accomplished most effectively. We address this prevalent problem in the context of car assembly at Mercedes-Benz Ludwigsfelde GmbH, a large-scale producer of commercial vehicles, where routes for automated guided vehicles used in the production process have traditionally been hand-coded by human engineers. Such adhoc methods may suffice as long as a running production process remains in place, while any change in the factory layout or production targets necessitates tedious manual reconfiguration, not to mention the missing portability between different production plants. Unlike this, we propose a declarative approach based on Answer Set Programming to optimize the routes taken by automated guided vehicles for accomplishing transport tasks. The advantages include a transparent and executable problem formalization, provable optimality of routes relative to objective criteria, as well as elaboration tolerance towards particular factory layouts and production targets. Moreover, we demonstrate that our approach is efficient enough to deal with the transport tasks evolving in realistic production processes at the car factory of Mercedes-Benz Ludwigsfelde GmbH. KW - automated guided vehicle routing KW - car assembly operations KW - answer set programming Y1 - 2018 U6 - https://doi.org/10.1017/S1471068418000182 SN - 1471-0684 SN - 1475-3081 VL - 18 IS - 3-4 SP - 520 EP - 534 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Gebser, Martin A1 - Kaminski, Roland A1 - Kaufmann, Benjamin A1 - Lühne, Patrick A1 - Obermeier, Philipp A1 - Ostrowski, Max A1 - Romero Davila, Javier A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian A1 - Wanko, Philipp T1 - The Potsdam Answer Set Solving Collection 5.0 JF - Künstliche Intelligenz N2 - The Potsdam answer set solving collection, or Potassco for short, bundles various tools implementing and/or applying answer set programming. The article at hand succeeds an earlier description of the Potassco project published in Gebser et al. (AI Commun 24(2):107-124, 2011). Hence, we concentrate in what follows on the major features of the most recent, fifth generation of the ASP system clingo and highlight some recent resulting application systems. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0528-x SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 181 EP - 182 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Haubelt, Christian A1 - Neubauer, Kai A1 - Schaub, Torsten H. A1 - Wanko, Philipp T1 - Design space exploration with answer set programming JF - Künstliche Intelligenz N2 - The aim of our project design space exploration with answer set programming is to develop a general framework based on Answer Set Programming (ASP) that finds valid solutions to the system design problem and simultaneously performs Design Space Exploration (DSE) to find the most favorable alternatives. We leverage recent developments in ASP solving that allow for tight integration of background theories to create a holistic framework for effective DSE. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0530-3 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 205 EP - 206 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Banbara, Mutsunori A1 - Inoue, Katsumi A1 - Kaufmann, Benjamin A1 - Okimoto, Tenda A1 - Schaub, Torsten H. A1 - Soh, Takehide A1 - Tamura, Naoyuki A1 - Wanko, Philipp T1 - teaspoon BT - solving the curriculum-based course timetabling problems with answer set programming JF - Annals of operation research N2 - Answer Set Programming (ASP) is an approach to declarative problem solving, combining a rich yet simple modeling language with high performance solving capacities. We here develop an ASP-based approach to curriculum-based course timetabling (CB-CTT), one of the most widely studied course timetabling problems. The resulting teaspoon system reads a CB-CTT instance of a standard input format and converts it into a set of ASP facts. In turn, these facts are combined with a first-order encoding for CB-CTT solving, which can subsequently be solved by any off-the-shelf ASP systems. We establish the competitiveness of our approach by empirically contrasting it to the best known bounds obtained so far via dedicated implementations. Furthermore, we extend the teaspoon system to multi-objective course timetabling and consider minimal perturbation problems. KW - Educational timetabling KW - Course timetabling KW - Answer set programming KW - Multi-objective optimization KW - Minimal perturbation problems Y1 - 2018 U6 - https://doi.org/10.1007/s10479-018-2757-7 SN - 0254-5330 SN - 1572-9338 VL - 275 IS - 1 SP - 3 EP - 37 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Brewka, Gerhard A1 - Ellmauthaler, Stefan A1 - Kern-Isberner, Gabriele A1 - Obermeier, Philipp A1 - Ostrowski, Max A1 - Romero, Javier A1 - Schaub, Torsten H. A1 - Schieweck, Steffen T1 - Advanced solving technology for dynamic and reactive applications JF - Künstliche Intelligenz Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0538-8 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 199 EP - 200 PB - Springer CY - Heidelberg ER -