TY - JOUR A1 - Lamprecht, Anna-Lena A1 - Margaria, Tiziana A1 - Steffen, Bernhard ED - Lambrecht, Anna-Lena ED - Margaria, Tiziana T1 - Modeling and Execution of Scientific Workflows with the jABC Framework JF - Process Design for Natural Scientists: an agile model-driven approach N2 - We summarize here the main characteristics and features of the jABC framework, used in the case studies as a graphical tool for modeling scientific processes and workflows. As a comprehensive environment for service-oriented modeling and design according to the XMDD (eXtreme Model-Driven Design) paradigm, the jABC offers much more than the pure modeling capability. Associated technologies and plugins provide in fact means for a rich variety of supporting functionality, such as remote service integration, taxonomical service classification, model execution, model verification, model synthesis, and model compilation. We describe here in short both the essential jABC features and the service integration philosophy followed in the environment. In our work over the last years we have seen that this kind of service definition and provisioning platform has the potential to become a core technology in interdisciplinary service orchestration and technology transfer: Domain experts, like scientists not specially trained in computer science, directly define complex service orchestrations as process models and use efficient and complex domain-specific tools in a simple and intuitive way. Y1 - 2014 SN - 978-3-662-45005-5 SN - 1865-0929 IS - 500 SP - 14 EP - 29 PB - Springer Verlag CY - Berlin ER - TY - JOUR A1 - Naujokat, Stefan A1 - Neubauer, Johannes A1 - Lamprecht, Anna-Lena A1 - Steffen, Bernhard A1 - Joerges, Sven A1 - Margaria, Tiziana T1 - Simplicity-first model-based plug-in development JF - Software : practice & experience N2 - In this article, we present our experience with over a decade of strict simplicity orientation in the development and evolution of plug-ins. The point of our approach is to enable our graphical modeling framework jABC to capture plug-in development in a domain-specific setting. The typically quite tedious and technical plug-in development is shifted this way from a programming task to the modeling level, where it can be mastered also by application experts without programming expertise. We show how the classical plug-in development profits from a systematic domain-specific API design and how the level of abstraction achieved this way can be further enhanced by defining adequate building blocks for high-level plug-in modeling. As the resulting plug-in models can be compiled and deployed automatically, our approach decomposes plug-in development into three phases where only the realization phase requires plug-in-specific effort. By using our modeling framework jABC, this effort boils down to graphical, tool-supported process modeling. Furthermore, we support the automatic completion of process sketches for executability. All this will be illustrated along the most recent plug-in-based evolution of the jABC framework, which witnessed quite some bootstrapping effects. KW - plug-ins KW - simplicity KW - domain-specific APIs KW - process modeling KW - bootstrapping KW - evolution KW - code generation KW - loose programming KW - dynamic service binding Y1 - 2014 U6 - https://doi.org/10.1002/spe.2243 SN - 0038-0644 SN - 1097-024X VL - 44 IS - 3 SP - 277 EP - 297 PB - Wiley-Blackwell CY - Hoboken ER -