TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian T1 - Gelfond-Zhang aggregates as propositional formulas JF - Artificial intelligence N2 - Answer Set Programming (ASP) has become a popular and widespread paradigm for practical Knowledge Representation thanks to its expressiveness and the available enhancements of its input language. One of such enhancements is the use of aggregates, for which different semantic proposals have been made. In this paper, we show that any ASP aggregate interpreted under Gelfond and Zhang's (GZ) semantics can be replaced (under strong equivalence) by a propositional formula. Restricted to the original GZ syntax, the resulting formula is reducible to a disjunction of conjunctions of literals but the formulation is still applicable even when the syntax is extended to allow for arbitrary formulas (including nested aggregates) in the condition. Once GZ-aggregates are represented as formulas, we establish a formal comparison (in terms of the logic of Here-and-There) to Ferraris' (F) aggregates, which are defined by a different formula translation involving nested implications. In particular, we prove that if we replace an F-aggregate by a GZ-aggregate in a rule head, we do not lose answer sets (although more can be gained). This extends the previously known result that the opposite happens in rule bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may yield more answer sets. Finally, we characterize a class of aggregates for which GZ- and F-semantics coincide. KW - Aggregates KW - Answer Set Programming Y1 - 2019 U6 - https://doi.org/10.1016/j.artint.2018.10.007 SN - 0004-3702 SN - 1872-7921 VL - 274 SP - 26 EP - 43 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sarsakov, Vladimir A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - A compiler for nested logic programming Y1 - 2004 SN - 3-540- 20721-x ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - On Computing belief change operations using quantifield boolean formulas N2 - In this paper, we show how an approach to belief revision and belief contraction can be axiomatized by means of quantified Boolean formulas. Specifically, we consider the approach of belief change scenarios, a general framework that has been introduced for expressing different forms of belief change. The essential idea is that for a belief change scenario (K, R, C), the set of formulas K, representing the knowledge base, is modified so that the sets of formulas R and C are respectively true in, and consistent with the result. By restricting the form of a belief change scenario, one obtains specific belief change operators including belief revision, contraction, update, and merging. For both the general approach and for specific operators, we give a quantified Boolean formula such that satisfying truth assignments to the free variables correspond to belief change extensions in the original approach. Hence, we reduce the problem of determining the results of a belief change operation to that of satisfiability. This approach has several benefits. First, it furnishes an axiomatic specification of belief change with respect to belief change scenarios. This then leads to further insight into the belief change framework. Second, this axiomatization allows us to identify strict complexity bounds for the considered reasoning tasks. Third, we have implemented these different forms of belief change by means of existing solvers for quantified Boolean formulas. As well, it appears that this approach may be straightforwardly applied to other specific approaches to belief change Y1 - 2004 SN - 0955-792X ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - On computing solutions to belief change scenarios Y1 - 2001 SN - 3-540- 42464-4 ER - TY - JOUR A1 - Pearce, David A1 - Sarsakov, Vladimir A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - A polynomial translation of logic programs with nested expressions into disjunctive logic programs Y1 - 2002 SN - 3-540-43930-7 ER - TY - JOUR A1 - Besnard, Philippe A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Paraconsistent reasoning via quantified boolean formulas Y1 - 2002 SN - 3-540-44190-5 ER - TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - "That is illogical, Captain!" : the debugging support tool spock for answer-set programs ; system description Y1 - 2007 ER - TY - JOUR A1 - Pearce, David A1 - Sarsakov, Vladimir A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - A polynomial translation of logic programs with nested expressions into disjunctive logic programs : preliminary report Y1 - 2002 ER - TY - JOUR A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Answer set programming unleashed! JF - Künstliche Intelligenz N2 - Answer Set Programming faces an increasing popularity for problem solving in various domains. While its modeling language allows us to express many complex problems in an easy way, its solving technology enables their effective resolution. In what follows, we detail some of the key factors of its success. Answer Set Programming [ASP; Brewka et al. Commun ACM 54(12):92–103, (2011)] is seeing a rapid proliferation in academia and industry due to its easy and flexible way to model and solve knowledge-intense combinatorial (optimization) problems. To this end, ASP offers a high-level modeling language paired with high-performance solving technology. As a result, ASP systems provide out-off-the-box, general-purpose search engines that allow for enumerating (optimal) solutions. They are represented as answer sets, each being a set of atoms representing a solution. The declarative approach of ASP allows a user to concentrate on a problem’s specification rather than the computational means to solve it. This makes ASP a prime candidate for rapid prototyping and an attractive tool for teaching key AI techniques since complex problems can be expressed in a succinct and elaboration tolerant way. This is eased by the tuning of ASP’s modeling language to knowledge representation and reasoning (KRR). The resulting impact is nicely reflected by a growing range of successful applications of ASP [Erdem et al. AI Mag 37(3):53–68, 2016; Falkner et al. Industrial applications of answer set programming. K++nstliche Intelligenz (2018)] Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0550-z SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 105 EP - 108 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Special issue on answer set programming T2 - Künstliche Intelligenz Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0554-8 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 101 EP - 103 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Besnard, Philippe A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Paraconsistent reasoning via quantified boolean formulas : Part II: Circumscribing inconsistent theories Y1 - 2003 SN - 3-540- 409494-5 ER - TY - JOUR A1 - Delgrande, James A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - A model-theoretic approach to belief change in answer set programming JF - ACM transactions on computational logic N2 - We address the problem of belief change in (nonmonotonic) logic programming under answer set semantics. Our formal techniques are analogous to those of distance-based belief revision in propositional logic. In particular, we build upon the model theory of logic programs furnished by SE interpretations, where an SE interpretation is a model of a logic program in the same way that a classical interpretation is a model of a propositional formula. Hence we extend techniques from the area of belief revision based on distance between models to belief change in logic programs. We first consider belief revision: for logic programs P and Q, the goal is to determine a program R that corresponds to the revision of P by Q, denoted P * Q. We investigate several operators, including (logic program) expansion and two revision operators based on the distance between the SE models of logic programs. It proves to be the case that expansion is an interesting operator in its own right, unlike in classical belief revision where it is relatively uninteresting. Expansion and revision are shown to satisfy a suite of interesting properties; in particular, our revision operators satisfy all or nearly all of the AGM postulates for revision. We next consider approaches for merging a set of logic programs, P-1,...,P-n. Again, our formal techniques are based on notions of relative distance between the SE models of the logic programs. Two approaches are examined. The first informally selects for each program P-i those models of P-i that vary the least from models of the other programs. The second approach informally selects those models of a program P-0 that are closest to the models of programs P-1,...,P-n. In this case, P-0 can be thought of as a set of database integrity constraints. We examine these operators with regards to how they satisfy relevant postulate sets. Last, we present encodings for computing the revision as well as the merging of logic programs within the same logic programming framework. This gives rise to a direct implementation of our approach in terms of off-the-shelf answer set solvers. These encodings also reflect the fact that our change operators do not increase the complexity of the base formalism. KW - Theory KW - Answer set programming KW - belief revision KW - belief merging KW - program encodings KW - strong equivalence Y1 - 2013 U6 - https://doi.org/10.1145/2480759.2480766 SN - 1529-3785 VL - 14 IS - 2 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Debugging ASP programs by means of ASP Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Alternative characterizations for program equivalence under aswer-set semantics : a preliminary report Y1 - 2007 ER - TY - GEN A1 - Schäpers, Björn A1 - Niemueller, Tim A1 - Lakemeyer, Gerhard A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - ASP-Based Time-Bounded Planning for Logistics Robots T2 - Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018) N2 - Manufacturing industries are undergoing a major paradigm shift towards more autonomy. Automated planning and scheduling then becomes a necessity. The Planning and Execution Competition for Logistics Robots in Simulation held at ICAPS is based on this scenario and provides an interesting testbed. However, the posed problem is challenging as also demonstrated by the somewhat weak results in 2017. The domain requires temporal reasoning and dealing with uncertainty. We propose a novel planning system based on Answer Set Programming and the Clingo solver to tackle these problems and incentivize robot cooperation. Our results show a significant performance improvement, both, in terms of lowering computational requirements and better game metrics. Y1 - 2018 SN - 2334-0835 SN - 2334-0843 SP - 509 EP - 517 PB - ASSOC Association for the Advancement of Artificial Intelligence CY - Palo Alto ER - TY - JOUR A1 - Grell, Susanne A1 - Schaub, Torsten H. A1 - Selbig, Joachim T1 - Modelling biological networks by action languages via set programming Y1 - 2006 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/gebsch06c.pdf U6 - https://doi.org/10.1007/11799573 SN - 0302-9743 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - A Preference-Based Framework for Updating logic Programs : preliminary reports Y1 - 2006 UR - http://www.easychair.org/FLoC-06/PREFS-preproceedings.pdf ER - TY - JOUR A1 - Gressmann, Jean A1 - Janhunen, Tomi A1 - Mercer, Robert E. A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Tichy, Richard T1 - On probing and multi-threading in platypus Y1 - 2006 UR - http://www2.in.tu-clausthal.de/~tmbehrens/NMR_Proc_TR4.pdf ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Approaching the core of unfounded sets Y1 - 2006 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angesc06a.pdf ER - TY - JOUR A1 - Gerbser, Martin A1 - Schaub, Torsten H. T1 - Tableau calculi for answer set programming Y1 - 2006 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/gebsch06c.pdf U6 - https://doi.org/10.1007/11799573 SN - 0302-9743 ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Janhunen, Tomi A1 - Schaub, Torsten H. T1 - What's a head without a body? Y1 - 2006 ER - TY - JOUR A1 - Gerbser, Martin A1 - Schaub, Torsten H. T1 - Characterizing (ASP) inferences by unit propagation Y1 - 2006 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - A preference-based framework for updating logic programs Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Mileo, Alessandra A1 - Schaub, Torsten H. T1 - Qualitative constraint enforcement in advanced policy specification Y1 - 2007 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Lang, Jérôme A1 - Schaub, Torsten H. T1 - Belief change based on global minimisation Y1 - 2007 ER - TY - JOUR A1 - Konczak, Kathrin A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - Graphs and colorings for answer set programming N2 - We investigate the usage of rule dependency graphs and their colorings for characterizing and computing answer sets of logic programs. This approach provides us with insights into the interplay between rules when inducing answer sets. We start with different characterizations of answer sets in terms of totally colored dependency graphs that differ ill graph-theoretical aspects. We then develop a series of operational characterizations of answer sets in terms of operators on partial colorings. In analogy to the notion of a derivation in proof theory, our operational characterizations are expressed as (non-deterministically formed) sequences of colorings, turning an uncolored graph into a totally colored one. In this way, we obtain an operational framework in which different combinations of operators result in different formal properties. Among others, we identify the basic strategy employed by the noMoRe system and justify its algorithmic approach. Furthermore, we distinguish operations corresponding to Fitting's operator as well as to well-founded semantics Y1 - 2006 UR - http://www.cs.kuleuven.ac.be/~dtai/projects/ALP//TPLP/ U6 - https://doi.org/10.1017/S1471068405002528 SN - 1471-0684 ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven T1 - GrinGo : a new grounder for answer set programming Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Konczak, Kathrin A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - Graphs and cologings for answer set programming : adridged report Y1 - 2004 SN - 3-540- 20721-x ER - TY - JOUR A1 - Boesel, Andreas A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - Profiling answer set programming : the visualization component of the noMoRe System Y1 - 2004 SN - 3-540-23242-7 ER - TY - JOUR A1 - Gressmann, Jean A1 - Janhunen, Tomi A1 - Mercer, Robert E. A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Tichy, Richard T1 - On probing and multi-threading in platypus Y1 - 2006 ER - TY - JOUR A1 - Mileo, Alessandra A1 - Schaub, Torsten H. T1 - Extending ordered disjunctions for policy enforcement : preliminary report Y1 - 2006 UR - http://www.easychair.org/FLoC-06/PREFS-preproceedings.pdf ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Liu, Daphne H. A1 - Schaub, Torsten H. A1 - Thiele, Sven T1 - COBA 2.0 : a consistency-based belief change system Y1 - 2006 UR - http://www2.in.tu-clausthal.de/~tmbehrens/NMR_Proc_TR4.pdf ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - An Extended Query language for action languages (and its application to aggregates and preferences) Y1 - 2006 UR - http://www2.in.tu-clausthal.de/~tmbehrens/NMR_Proc_TR4.pdf ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Linke, Thomas A1 - Neumann, Andre A1 - Schaub, Torsten H. T1 - The nomore++ approach to answer set solving Y1 - 2005 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angelinesc05c.pdf ER - TY - JOUR A1 - Gressmann, Jean A1 - Janhunen, Tomi A1 - Mercer, Robert E. A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Tichy, Richard T1 - Platypus : a platform for distributed answer set solving Y1 - 2005 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/grjamescthti05a.pdf ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Linke, Thomas A1 - Neumann, Andre A1 - Schaub, Torsten H. T1 - The nomore++ approach to answer set solving Y1 - 2005 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angelinesc05c.pdf ER - TY - JOUR A1 - Grell, Susanne A1 - Konczak, Kathrin A1 - Schaub, Torsten H. T1 - nomore) : a system for computing preferred Answer Sets Y1 - 2005 SN - 0302-9743 ER - TY - JOUR A1 - Anger, Christian A1 - Konczak, Kathrin A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - A Glimpse of Answer Set Programming Y1 - 2005 UR - http://www.cs.uni-potsdam.de/~konczak/Papers/ankolisc05.pdf SN - 0170-4516 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Expressing default logic variants in default logic N2 - Reiter's default logic is one of the best known and most studied of the approaches to nonmonotonic reasoning. Several variants of default logic have subsequently been proposed to give systems with properties differing from the original. In this paper, we examine the relationship between default logic and its major variants. We accomplish this by translating a default theory under a variant interpretation into a second default theory, under the original Reiter semantics, wherein the variant interpretation is respected. That is, in each case we show that, given an extension of a translated theory, one may extract an extension of the original variant default logic theory. We show how constrained, rational, justified, and cumulative default logic can be expressed in Reiter's default logic. As well, we show how Reiter's default logic can be expressed in rational default logic. From this, we suggest that any such variant can be similarly treated. Consequently, we provide a unification of default logics, showing how the original formulation of default logic may express its variants. Moreover, the translations clearly express the relationships between alternative approaches to default logic. The translations themselves are shown to generally have good properties. Thus, in at least a theoretical sense, we show that these variants are in a sense superfluous, in that for any of these variants of default logic, we can exactly mimic the behaviour of a variant in standard default logic. As well, the translations lend insight into means of classifying the expressive power of default logic variants; specifically we suggest that the property of semi-monotonicity represents a division with respect to expressibility, whereas regularity and cumulativity do not Y1 - 2005 SN - 0955-792X ER - TY - JOUR A1 - Gebser, Martin A1 - Liu, Lengning A1 - Namasivayam, Gayathri A1 - Neumann, André A1 - Schaub, Torsten H. A1 - Truszczynski, Miroslaw T1 - The first answer set programming system competition Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Borchert, P. A1 - Anger, Christian A1 - Schaub, Torsten H. A1 - Truszczynski, M. T1 - Towards systematic benchmarking in answer set programming : the dagstuhl initiative Y1 - 2004 SN - 3-540- 20721-x ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Two approaches to merging knowledge bases Y1 - 2004 SN - 3-540-23242-7 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - Domain-specific preference for causal reasoning and planning Y1 - 2004 SN - 1-577-35201-7 ER - TY - JOUR A1 - Flöter, André A1 - Selbig, Joachim A1 - Schaub, Torsten H. T1 - Finding metabolic pathways in decision forests Y1 - 2004 SN - 3-540-23221-4 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Consistency-based approaches to merging knowledge based : preliminary report Y1 - 2004 UR - http://www.pims.math.ca/science/2004/NMR/papers/paper17.pdf SN - 92-990021-0-X ER - TY - JOUR A1 - Flöter, André A1 - Nicolas, Jacques A1 - Schaub, Torsten H. A1 - Selbig, Joachim T1 - Threshold extraction in metabolite concentration data N2 - Motivation: Continued development of analytical techniques based on gas chromatography and mass spectrometry now facilitates the generation of larger sets of metabolite concentration data. An important step towards the understanding of metabolite dynamics is the recognition of stable states where metabolite concentrations exhibit a simple behaviour. Such states can be characterized through the identification of significant thresholds in the concentrations. But general techniques for finding discretization thresholds in continuous data prove to be practically insufficient for detecting states due to the weak conditional dependences in concentration data. Results: We introduce a method of recognizing states in the framework of decision tree induction. It is based upon a global analysis of decision forests where stability and quality are evaluated. It leads to the detection of thresholds that are both comprehensible and robust. Applied to metabolite concentration data, this method has led to the discovery of hidden states in the corresponding variables. Some of these reflect known properties of the biological experiments, and others point to putative new states Y1 - 2004 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Wang, Kewen T1 - A classification and survey of preference handling approchaches in nonmonotonic reasoning N2 - In recent years, there has been a large amount of disparate work concerning the representation and reasoning with qualitative preferential information by means of approaches to nonmonotonic reasoning. Given the variety of underlying systems, assumptions, motivations, and intuitions, it is difficult to compare or relate one approach with another. Here, we present an overview and classification for approaches to dealing with preference. A set of criteria for classifying approaches is given, followed by a set of desiderata that an approach might be expected to satisfy. A comprehensive set of approaches is subsequently given and classified with respect to these sets of underlying principles Y1 - 2004 SN - 0824-7935 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Reasoning with sets of preferences in default logic N2 - We present a general approach for representing and reasoning with sets of defaults in default logic, focusing on reasoning about preferences among sets of defaults. First, we consider how to control the application of a set of defaults so that either all apply (if possible) or none do (if not). From this, an approach to dealing with preferences among sets of default rules is developed. We begin with an ordered default theory, consisting of a standard default theory, but with possible preferences on sets of rules. This theory is transformed into a second, standard default theory wherein the preferences are respected. The approach differs from other work, in that we obtain standard default theories and do not rely on prioritized versions of default logic. In practical terms this means we can immediately use existing default logic theorem provers for an implementation. Also, we directly generate just those extensions containing the most preferred applied rules; in contrast, most previous approaches generate all extensions, then select the most preferred. In a major application of the approach, we show how semimonotonic default theories can be encoded so that reasoning can be carried out at the object level. With this, we can reason about default extensions from within the framework of a standard default logic. Hence one can encode notions such as skeptical and credulous conclusions, and can reason about such conclusions within a single extension Y1 - 2004 SN - 0824-7935 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - A framework for compiling preferences in logic programs Y1 - 2003 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Reasoning credulously and skeptically within a single extension Y1 - 2003 ER -