TY - JOUR A1 - Bordihn, Henning A1 - Mitrana, Victor A1 - Negru, Maria C. A1 - Paun, Andrei A1 - Paun, Mihaela T1 - Small networks of polarized splicing processors are universal JF - Natural computing : an innovative journal bridging biosciences and computer sciences ; an international journal N2 - In this paper, we consider the computational power of a new variant of networks of splicing processors in which each processor as well as the data navigating throughout the network are now considered to be polarized. While the polarization of every processor is predefined (negative, neutral, positive), the polarization of data is dynamically computed by means of a valuation mapping. Consequently, the protocol of communication is naturally defined by means of this polarization. We show that networks of polarized splicing processors (NPSP) of size 2 are computationally complete, which immediately settles the question of designing computationally complete NPSPs of minimal size. With two more nodes we can simulate every nondeterministic Turing machine without increasing the time complexity. Particularly, we prove that NPSP of size 4 can accept all languages in NP in polynomial time. Furthermore, another computational model that is universal, namely the 2-tag system, can be simulated by NPSP of size 3 preserving the time complexity. All these results can be obtained with NPSPs with valuations in the set as well. We finally show that Turing machines can simulate a variant of NPSPs and discuss the time complexity of this simulation. KW - Computing with DNA KW - Splicing KW - Splicing processor KW - Polarization KW - 2-tag system KW - Turing machine Y1 - 2018 U6 - https://doi.org/10.1007/s11047-018-9691-0 SN - 1567-7818 SN - 1572-9796 VL - 17 IS - 4 SP - 799 EP - 809 PB - Springer CY - Dordrecht ER -