TY - JOUR A1 - Bordihn, Henning A1 - Mitrana, Victor A1 - Paun, Andrei A1 - Paun, Mihaela T1 - Hairpin completions and reductions BT - semilinearity properties JF - Natural computing : an innovative journal bridging biosciences and computer sciences ; an international journal N2 - This paper is part of the investigation of some operations on words and languages with motivations coming from DNA biochemistry, namely three variants of hairpin completion and three variants of hairpin reduction. Since not all the hairpin completions or reductions of semilinear languages remain semilinear, we study sufficient conditions for semilinear languages to preserve their semilinearity property after applying the non-iterated hairpin completion or hairpin reduction. A similar approach is then applied to the iterated variants of these operations. Along these lines, we define the hairpin reduction root of a language and show that the hairpin reduction root of a semilinear language is not necessarily semilinear except the universal language. A few open problems are finally discussed. KW - DNA hairpin formation KW - Hairpin completions KW - Hairpin reductions KW - Semilinearity property Y1 - 2020 U6 - https://doi.org/10.1007/s11047-020-09797-0 SN - 1572-9796 VL - 20 IS - 2 SP - 193 EP - 203 PB - Springer Science + Business Media B.V. CY - Dordrecht ER - TY - JOUR A1 - Bordihn, Henning A1 - Mitrana, Victor A1 - Negru, Maria C. A1 - Paun, Andrei A1 - Paun, Mihaela T1 - Small networks of polarized splicing processors are universal JF - Natural computing : an innovative journal bridging biosciences and computer sciences ; an international journal N2 - In this paper, we consider the computational power of a new variant of networks of splicing processors in which each processor as well as the data navigating throughout the network are now considered to be polarized. While the polarization of every processor is predefined (negative, neutral, positive), the polarization of data is dynamically computed by means of a valuation mapping. Consequently, the protocol of communication is naturally defined by means of this polarization. We show that networks of polarized splicing processors (NPSP) of size 2 are computationally complete, which immediately settles the question of designing computationally complete NPSPs of minimal size. With two more nodes we can simulate every nondeterministic Turing machine without increasing the time complexity. Particularly, we prove that NPSP of size 4 can accept all languages in NP in polynomial time. Furthermore, another computational model that is universal, namely the 2-tag system, can be simulated by NPSP of size 3 preserving the time complexity. All these results can be obtained with NPSPs with valuations in the set as well. We finally show that Turing machines can simulate a variant of NPSPs and discuss the time complexity of this simulation. KW - Computing with DNA KW - Splicing KW - Splicing processor KW - Polarization KW - 2-tag system KW - Turing machine Y1 - 2018 U6 - https://doi.org/10.1007/s11047-018-9691-0 SN - 1567-7818 SN - 1572-9796 VL - 17 IS - 4 SP - 799 EP - 809 PB - Springer CY - Dordrecht ER -