TY - JOUR A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Answer set programming unleashed! JF - Künstliche Intelligenz N2 - Answer Set Programming faces an increasing popularity for problem solving in various domains. While its modeling language allows us to express many complex problems in an easy way, its solving technology enables their effective resolution. In what follows, we detail some of the key factors of its success. Answer Set Programming [ASP; Brewka et al. Commun ACM 54(12):92–103, (2011)] is seeing a rapid proliferation in academia and industry due to its easy and flexible way to model and solve knowledge-intense combinatorial (optimization) problems. To this end, ASP offers a high-level modeling language paired with high-performance solving technology. As a result, ASP systems provide out-off-the-box, general-purpose search engines that allow for enumerating (optimal) solutions. They are represented as answer sets, each being a set of atoms representing a solution. The declarative approach of ASP allows a user to concentrate on a problem’s specification rather than the computational means to solve it. This makes ASP a prime candidate for rapid prototyping and an attractive tool for teaching key AI techniques since complex problems can be expressed in a succinct and elaboration tolerant way. This is eased by the tuning of ASP’s modeling language to knowledge representation and reasoning (KRR). The resulting impact is nicely reflected by a growing range of successful applications of ASP [Erdem et al. AI Mag 37(3):53–68, 2016; Falkner et al. Industrial applications of answer set programming. K++nstliche Intelligenz (2018)] Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0550-z SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 105 EP - 108 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Special issue on answer set programming T2 - Künstliche Intelligenz Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0554-8 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 101 EP - 103 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Baier, Thomas A1 - Di Ciccio, Claudio A1 - Mendling, Jan A1 - Weske, Mathias T1 - Matching events and activities by integrating behavioral aspects and label analysis JF - Software and systems modeling N2 - Nowadays, business processes are increasingly supported by IT services that produce massive amounts of event data during the execution of a process. These event data can be used to analyze the process using process mining techniques to discover the real process, measure conformance to a given process model, or to enhance existing models with performance information. Mapping the produced events to activities of a given process model is essential for conformance checking, annotation and understanding of process mining results. In order to accomplish this mapping with low manual effort, we developed a semi-automatic approach that maps events to activities using insights from behavioral analysis and label analysis. The approach extracts Declare constraints from both the log and the model to build matching constraints to efficiently reduce the number of possible mappings. These mappings are further reduced using techniques from natural language processing, which allow for a matching based on labels and external knowledge sources. The evaluation with synthetic and real-life data demonstrates the effectiveness of the approach and its robustness toward non-conforming execution logs. KW - Process mining KW - Event mapping KW - Business process intelligence KW - Constraint satisfaction KW - Declare KW - Natural language processing Y1 - 2018 U6 - https://doi.org/10.1007/s10270-017-0603-z SN - 1619-1366 SN - 1619-1374 VL - 17 IS - 2 SP - 573 EP - 598 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Przybylla, Mareen A1 - Romeike, Ralf T1 - Empowering learners with tools in CS education BT - physical computing in secondary schools JF - it - Information Technology N2 - In computer science, computer systems are both, objects of investigation and tools that enable creative learning and design. Tools for learning have a long tradition in computer science education. Already in the late 1960s, Papert developed a concept which had an immense impact on the development of informal education in the following years: his theory of constructionism understands learning as a creative process of knowledge construction that is most effective when learners create something purposeful that they can try out, show around, discuss, analyse and receive praise for. By now, there are numerous learning and programming environments that are based on the constructionist ideas. Modern tools offer opportunities for students to learn in motivating ways and gain impressive results in programming games, animations, implementing 3D models or developing interactive objects. This article gives an overview of computer science education research related to tools and media to be used in educational settings. We analyse different types of tools with a special focus on the categorization and development of tools for student adequate physical computing activities in the classroom. Research around the development and evaluation of tools and learning resources in the domain of physical computing is illustrated with the example of "My Interactive Garden", a constructionist learning and programming environment. It is explained how the results from empirical studies are integrated in the continuous development of the learning material. KW - tools KW - media KW - resources KW - computer science education KW - physical computing Y1 - 2018 U6 - https://doi.org/10.1515/itit-2017-0032 SN - 1611-2776 SN - 2196-7032 VL - 60 IS - 2 SP - 91 EP - 101 PB - De Gruyter CY - Berlin ER - TY - GEN A1 - Frank, Mario A1 - Kreitz, Christoph T1 - A theorem prover for scientific and educational purposes T2 - Electronic proceedings in theoretical computer science N2 - We present a prototype of an integrated reasoning environment for educational purposes. The presented tool is a fragment of a proof assistant and automated theorem prover. We describe the existing and planned functionality of the theorem prover and especially the functionality of the educational fragment. This currently supports working with terms of the untyped lambda calculus and addresses both undergraduate students and researchers. We show how the tool can be used to support the students' understanding of functional programming and discuss general problems related to the process of building theorem proving software that aims at supporting both research and education. Y1 - 2018 U6 - https://doi.org/10.4204/EPTCS.267.4 SN - 2075-2180 IS - 267 SP - 59 EP - 69 PB - Open Publishing Association CY - Sydney ER - TY - GEN A1 - Schäpers, Björn A1 - Niemueller, Tim A1 - Lakemeyer, Gerhard A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - ASP-Based Time-Bounded Planning for Logistics Robots T2 - Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018) N2 - Manufacturing industries are undergoing a major paradigm shift towards more autonomy. Automated planning and scheduling then becomes a necessity. The Planning and Execution Competition for Logistics Robots in Simulation held at ICAPS is based on this scenario and provides an interesting testbed. However, the posed problem is challenging as also demonstrated by the somewhat weak results in 2017. The domain requires temporal reasoning and dealing with uncertainty. We propose a novel planning system based on Answer Set Programming and the Clingo solver to tackle these problems and incentivize robot cooperation. Our results show a significant performance improvement, both, in terms of lowering computational requirements and better game metrics. Y1 - 2018 SN - 2334-0835 SN - 2334-0843 SP - 509 EP - 517 PB - ASSOC Association for the Advancement of Artificial Intelligence CY - Palo Alto ER - TY - CHAP A1 - Kiy, Alexander A1 - Knoth, Alexander Henning A1 - Müller, Ina ED - Harris-Huemmert, Susan ED - Pohlenz, Philipp ED - Mitterauer, Lukas T1 - ReflectUP-App Situative und kontextbezogene Evaluation des Studieneinstiegs T2 - Digitalisierung der Hochschullehre Neue Anforderungen an die Evaluation? Y1 - 2018 SN - 978-3-8309-3807-1 SP - 85 EP - 102 PB - Waxmann CY - Münster ER - TY - GEN A1 - Bordihn, Henning A1 - Nagy, Benedek A1 - Vaszil, György T1 - Preface: Non-classical models of automata and applications VIII T2 - RAIRO-Theoretical informatics and appli and applications Y1 - 2018 U6 - https://doi.org/10.1051/ita/2018019 SN - 0988-3754 SN - 1290-385X VL - 52 IS - 2-4 SP - 87 EP - 88 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Afantenos, Stergos A1 - Peldszus, Andreas A1 - Stede, Manfred T1 - Comparing decoding mechanisms for parsing argumentative structures T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the 'argumentative microtext corpus' [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801-815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1062 KW - argumentation structure KW - argument mining KW - parsing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-470527 SN - 1866-8372 IS - 1062 ER - TY - JOUR A1 - Gebser, Martin A1 - Obermeier, Philipp A1 - Schaub, Torsten H. A1 - Ratsch-Heitmann, Michel A1 - Runge, Mario T1 - Routing driverless transport vehicles in car assembly with answer set programming JF - Theory and practice of logic programming N2 - Automated storage and retrieval systems are principal components of modern production and warehouse facilities. In particular, automated guided vehicles nowadays substitute human-operated pallet trucks in transporting production materials between storage locations and assembly stations. While low-level control systems take care of navigating such driverless vehicles along programmed routes and avoid collisions even under unforeseen circumstances, in the common case of multiple vehicles sharing the same operation area, the problem remains how to set up routes such that a collection of transport tasks is accomplished most effectively. We address this prevalent problem in the context of car assembly at Mercedes-Benz Ludwigsfelde GmbH, a large-scale producer of commercial vehicles, where routes for automated guided vehicles used in the production process have traditionally been hand-coded by human engineers. Such adhoc methods may suffice as long as a running production process remains in place, while any change in the factory layout or production targets necessitates tedious manual reconfiguration, not to mention the missing portability between different production plants. Unlike this, we propose a declarative approach based on Answer Set Programming to optimize the routes taken by automated guided vehicles for accomplishing transport tasks. The advantages include a transparent and executable problem formalization, provable optimality of routes relative to objective criteria, as well as elaboration tolerance towards particular factory layouts and production targets. Moreover, we demonstrate that our approach is efficient enough to deal with the transport tasks evolving in realistic production processes at the car factory of Mercedes-Benz Ludwigsfelde GmbH. KW - automated guided vehicle routing KW - car assembly operations KW - answer set programming Y1 - 2018 U6 - https://doi.org/10.1017/S1471068418000182 SN - 1471-0684 SN - 1475-3081 VL - 18 IS - 3-4 SP - 520 EP - 534 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Gebser, Martin A1 - Kaminski, Roland A1 - Kaufmann, Benjamin A1 - Lühne, Patrick A1 - Obermeier, Philipp A1 - Ostrowski, Max A1 - Romero Davila, Javier A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian A1 - Wanko, Philipp T1 - The Potsdam Answer Set Solving Collection 5.0 JF - Künstliche Intelligenz N2 - The Potsdam answer set solving collection, or Potassco for short, bundles various tools implementing and/or applying answer set programming. The article at hand succeeds an earlier description of the Potassco project published in Gebser et al. (AI Commun 24(2):107-124, 2011). Hence, we concentrate in what follows on the major features of the most recent, fifth generation of the ASP system clingo and highlight some recent resulting application systems. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0528-x SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 181 EP - 182 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Haubelt, Christian A1 - Neubauer, Kai A1 - Schaub, Torsten H. A1 - Wanko, Philipp T1 - Design space exploration with answer set programming JF - Künstliche Intelligenz N2 - The aim of our project design space exploration with answer set programming is to develop a general framework based on Answer Set Programming (ASP) that finds valid solutions to the system design problem and simultaneously performs Design Space Exploration (DSE) to find the most favorable alternatives. We leverage recent developments in ASP solving that allow for tight integration of background theories to create a holistic framework for effective DSE. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0530-3 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 205 EP - 206 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Lifschitz, Vladimir A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Interview with Vladimir Lifschitz T2 - Künstliche Intelligenz N2 - This interview with Vladimir Lifschitz was conducted by Torsten Schaub at the University of Texas at Austin in August 2017. The question set was compiled by Torsten Schaub and Stefan Woltran. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0552-x SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 213 EP - 218 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Brewka, Gerhard A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Interview with Gerhard Brewka T2 - Künstliche Intelligenz N2 - This interview with Gerhard Brewka was conducted by correspondance in May 2018. The question set was compiled by Torsten Schaub and Stefan Woltran. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0549-5 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 219 EP - 221 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Prescher, Denise A1 - Bornschein, Jens A1 - Köhlmann, Wiebke A1 - Weber, Gerhard T1 - Touching graphical applications BT - bimanual tactile interaction on the HyperBraille pin-matrix display JF - Universal Access in the Information Society N2 - Novel two-dimensional tactile displays enable blind users to not only get access to the textual but also to the graphical content of a graphical user interface. Due to the higher amount of information that can be presented in parallel, orientation and exploration can be more complex. In this paper we present the HyperBraille system, which consists of a pin-matrix device as well as a graphical screen reader providing the user with appropriate presentation and interaction possibilities. To allow for a detailed analysis of bimanual interaction strategies on a pin-matrix device, we conducted two user studies with a total of 12 blind people. The task was to fill in .pdf forms on the pin-matrix device by using different input methods, namely gestures, built-in hardware buttons as well as a conventional PC keyboard. The forms were presented in a semigraphic view type that not only contains Braille but also tactile widgets in a spatial arrangement. While completion time and error rate partly depended on the chosen input method, the usage of special reading strategies seemed to be independent of it. A direct comparison of the system and a conventional assistive technology (screen reader with single-line Braille device) showed that interaction on the pin-matrix device can be very efficient if the user is trained. The two-dimensional output can improve access to .pdf forms with insufficient accessibility as the mapping of input controls and the corresponding labels can be supported by a spatial presentation. KW - Planar tactile display KW - Blind users KW - pdf forms KW - Screen reader KW - Gesture input KW - Key input Y1 - 2018 U6 - https://doi.org/10.1007/s10209-017-0538-8 SN - 1615-5289 SN - 1615-5297 VL - 17 IS - 2 SP - 391 EP - 409 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Afantenos, Stergos A1 - Peldszus, Andreas A1 - Stede, Manfred T1 - Comparing decoding mechanisms for parsing argumentative structures JF - Argument & Computation N2 - Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the ‘argumentative microtext corpus’ [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801–815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance. KW - Argumentation structure KW - argument mining KW - parsing Y1 - 2018 U6 - https://doi.org/10.3233/AAC-180033 SN - 1946-2166 SN - 1946-2174 VL - 9 IS - 3 SP - 177 EP - 192 PB - IOS Press CY - Amsterdam ER - TY - GEN A1 - Neubauer, Kai A1 - Haubelt, Christian A1 - Wanko, Philipp A1 - Schaub, Torsten H. T1 - Utilizing quad-trees for efficient design space exploration with partial assignment evaluation T2 - 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC) N2 - Recently, it has been shown that constraint-based symbolic solving techniques offer an efficient way for deciding binding and routing options in order to obtain a feasible system level implementation. In combination with various background theories, a feasibility analysis of the resulting system may already be performed on partial solutions. That is, infeasible subsets of mapping and routing options can be pruned early in the decision process, which fastens the solving accordingly. However, allowing a proper design space exploration including multi-objective optimization also requires an efficient structure for storing and managing non-dominated solutions. In this work, we propose and study the usage of the Quad-Tree data structure in the context of partial assignment evaluation during system synthesis. Out experiments show that unnecessary dominance checks can be avoided, which indicates a preference of Quad-Trees over a commonly used list-based implementation for large combinatorial optimization problems. Y1 - 2018 SN - 978-1-5090-0602-1 U6 - https://doi.org/10.1109/ASPDAC.2018.8297362 SN - 2153-6961 SP - 434 EP - 439 PB - IEEE CY - New York ER - TY - GEN A1 - Bosser, Anne-Gwenn A1 - Cabalar, Pedro A1 - Dieguez, Martin A1 - Schaub, Torsten H. T1 - Introducing temporal stable models for linear dynamic logic T2 - 16th International Conference on Principles of Knowledge Representation and Reasoning N2 - We propose a new temporal extension of the logic of Here-and-There (HT) and its equilibria obtained by combining it with dynamic logic over (linear) traces. Unlike previous temporal extensions of HT based on linear temporal logic, the dynamic logic features allow us to reason about the composition of actions. For instance, this can be used to exercise fine grained control when planning in robotics, as exemplified by GOLOG. In this paper, we lay the foundations of our approach, and refer to it as Linear Dynamic Equilibrium Logic, or simply DEL. We start by developing the formal framework of DEL and provide relevant characteristic results. Among them, we elaborate upon the relationships to traditional linear dynamic logic and previous temporal extensions of HT. Y1 - 2018 UR - https://www.dc.fi.udc.es/~cabalar/del.pdf SP - 12 EP - 21 PB - ASSOC Association for the Advancement of Artificial Intelligence CY - Palo Alto ER - TY - GEN A1 - Sahlmann, Kristina A1 - Schwotzer, Thomas T1 - Ontology-based virtual IoT devices for edge computing T2 - Proceedings of the 8th International Conference on the Internet of Things N2 - An IoT network may consist of hundreds heterogeneous devices. Some of them may be constrained in terms of memory, power, processing and network capacity. Manual network and service management of IoT devices are challenging. We propose a usage of an ontology for the IoT device descriptions enabling automatic network management as well as service discovery and aggregation. Our IoT architecture approach ensures interoperability using existing standards, i.e. MQTT protocol and SemanticWeb technologies. We herein introduce virtual IoT devices and their semantic framework deployed at the edge of network. As a result, virtual devices are enabled to aggregate capabilities of IoT devices, derive new services by inference, delegate requests/responses and generate events. Furthermore, they can collect and pre-process sensor data. These tasks on the edge computing overcome the shortcomings of the cloud usage regarding siloization, network bandwidth, latency and speed. We validate our proposition by implementing a virtual device on a Raspberry Pi. KW - Internet of Things KW - Edge Computing KW - oneM2M Ontology KW - M2M KW - Semantic Interoperability KW - MQTT Y1 - 2018 SN - 978-1-4503-6564-2 U6 - https://doi.org/10.1145/3277593.3277597 SP - 1 EP - 7 PB - Association for Computing Machinery CY - New York ER - TY - GEN A1 - Böhne, Sebastian A1 - Kreitz, Christoph T1 - Learning how to prove BT - from the coq proof assistant to textbook style T2 - Electronic proceedings in theoretical computer science N2 - We have developed an alternative approach to teaching computer science students how to prove. First, students are taught how to prove theorems with the Coq proof assistant. In a second, more difficult, step students will transfer their acquired skills to the area of textbook proofs. In this article we present a realisation of the second step. Proofs in Coq have a high degree of formality while textbook proofs have only a medium one. Therefore our key idea is to reduce the degree of formality from the level of Coq to textbook proofs in several small steps. For that purpose we introduce three proof styles between Coq and textbook proofs, called line by line comments, weakened line by line comments, and structure faithful proofs. While this article is mostly conceptional we also report on experiences with putting our approach into practise. Y1 - 2018 U6 - https://doi.org/10.4204/EPTCS.267.1 SN - 2075-2180 IS - 267 SP - 1 EP - 18 PB - Open Publishing Association CY - Sydney ER -