TY - JOUR A1 - Arnold, Holger T1 - A linearized DPLL calculus with learning N2 - This paper describes the proof calculus LD for clausal propositional logic, which is a linearized form of the well-known DPLL calculus extended by clause learning. It is motivated by the demand to model how current SAT solvers built on clause learning are working, while abstracting from decision heuristics and implementation details. The calculus is proved sound and terminating. Further, it is shown that both the original DPLL calculus and the conflict-directed backtracking calculus with clause learning, as it is implemented in many current SAT solvers, are complete and proof-confluent instances of the LD calculus. N2 - Dieser Artikel beschreibt den Beweiskalkül LD für aussagenlogische Formeln in Klauselform. Dieser Kalkül ist eine um Klausellernen erweiterte linearisierte Variante des bekannten DPLL-Kalküls. Er soll dazu dienen, das Verhalten von auf Klausellernen basierenden SAT-Beweisern zu modellieren, wobei von Entscheidungsheuristiken und Implementierungsdetails abstrahiert werden soll. Es werden Korrektheit und Terminierung des Kalküls bewiesen. Weiterhin wird gezeigt, dass sowohl der ursprüngliche DPLL-Kalkül als auch der konfliktgesteuerte Rücksetzalgorithmus mit Klausellernen, wie er in vielen aktuellen SAT-Beweisern implementiert ist, vollständige und beweiskonfluente Spezialisierungen des LD-Kalküls sind. KW - SAT KW - DPLL KW - Klausellernen KW - Automatisches Beweisen KW - SAT KW - DPLL KW - Clause Learning KW - Automated Theorem Proving Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15421 ER - TY - INPR A1 - Arnold, Holger T1 - A linearized DPLL calculus with clause learning (2nd, revised version) N2 - Many formal descriptions of DPLL-based SAT algorithms either do not include all essential proof techniques applied by modern SAT solvers or are bound to particular heuristics or data structures. This makes it difficult to analyze proof-theoretic properties or the search complexity of these algorithms. In this paper we try to improve this situation by developing a nondeterministic proof calculus that models the functioning of SAT algorithms based on the DPLL calculus with clause learning. This calculus is independent of implementation details yet precise enough to enable a formal analysis of realistic DPLL-based SAT algorithms. N2 - Viele formale Beschreibungen DPLL-basierter SAT-Algorithmen enthalten entweder nicht alle wesentlichen Beweistechniken, die in modernen SAT-Solvern implementiert sind, oder sind an bestimmte Heuristiken oder Datenstrukturen gebunden. Dies erschwert die Analyse beweistheoretischer Eigenschaften oder der Suchkomplexität derartiger Algorithmen. Mit diesem Artikel versuchen wir, diese Situation durch die Entwicklung eines nichtdeterministischen Beweiskalküls zu verbessern, der die Arbeitsweise von auf dem DPLL-Kalkül basierenden SAT-Algorithmen mit Klausellernen modelliert. Dieser Kalkül ist unabhängig von Implementierungsdetails, aber dennoch präzise genug, um eine formale Analyse realistischer DPLL-basierter SAT-Algorithmen zu ermöglichen. KW - Automatisches Beweisen KW - Logikkalkül KW - SAT KW - DPLL KW - Klausellernen KW - automated theorem proving KW - logical calculus KW - SAT KW - DPLL KW - clause learning Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29080 ER - TY - THES A1 - Ghasemzadeh, Mohammad T1 - A new algorithm for the quantified satisfiability problem, based on zero-suppressed binary decision diagrams and memoization T1 - Ein neuer Algorithmus für die quantifizierte Aussagenlogik, basierend auf Zero-suppressed BDDs und Memoization N2 - Quantified Boolean formulas (QBFs) play an important role in theoretical computer science. QBF extends propositional logic in such a way that many advanced forms of reasoning can be easily formulated and evaluated. In this dissertation we present our ZQSAT, which is an algorithm for evaluating quantified Boolean formulas. ZQSAT is based on ZBDD: Zero-Suppressed Binary Decision Diagram , which is a variant of BDD, and an adopted version of the DPLL algorithm. It has been implemented in C using the CUDD: Colorado University Decision Diagram package. The capability of ZBDDs in storing sets of subsets efficiently enabled us to store the clauses of a QBF very compactly and let us to embed the notion of memoization to the DPLL algorithm. These points led us to implement the search algorithm in such a way that we could store and reuse the results of all previously solved subformulas with a little overheads. ZQSAT can solve some sets of standard QBF benchmark problems (known to be hard for DPLL based algorithms) faster than the best existing solvers. In addition to prenex-CNF, ZQSAT accepts prenex-NNF formulas. We show and prove how this capability can be exponentially beneficial. N2 - In der Dissertation stellen wir einen neuen Algorithmus vor, welcher Formeln der quantifizierten Aussagenlogik (engl. Quantified Boolean formula, kurz QBF) löst. QBFs sind eine Erweiterung der klassischen Aussagenlogik um die Quantifizierung über aussagenlogische Variablen. Die quantifizierte Aussagenlogik ist dabei eine konservative Erweiterung der Aussagenlogik, d.h. es können nicht mehr Theoreme nachgewiesen werden als in der gewöhnlichen Aussagenlogik. Der Vorteil der Verwendung von QBFs ergibt sich durch die Möglichkeit, Sachverhalte kompakter zu repräsentieren. SAT (die Frage nach der Erfüllbarkeit einer Formel der Aussagenlogik) und QSAT (die Frage nach der Erfüllbarkeit einer QBF) sind zentrale Probleme in der Informatik mit einer Fülle von Anwendungen, wie zum Beispiel in der Graphentheorie, bei Planungsproblemen, nichtmonotonen Logiken oder bei der Verifikation. Insbesondere die Verifikation von Hard- und Software ist ein sehr aktuelles und wichtiges Forschungsgebiet in der Informatik. Unser Algorithmus zur Lösung von QBFs basiert auf sogenannten ZBDDs (engl. Zero-suppressed Binary decision Diagrams), welche eine Variante der BDDs (engl. Binary decision Diagrams) sind. BDDs sind eine kompakte Repräsentation von Formeln der Aussagenlogik. Der Algorithmus kombiniert nun bekannte Techniken zum Lösen von QBFs mit der ZBDD-Darstellung unter Verwendung geeigneter Heuristiken und Memoization. Memoization ermöglicht dabei das einfache Wiederverwenden bereits gelöster Teilprobleme. Der Algorithmus wurde unter Verwendung des CUDD-Paketes (Colorado University Decision Diagram) implementiert und unter dem Namen ZQSAT veröffentlicht. In Tests konnten wir nachweisen, dass ZQSAT konkurrenzfähig zu existierenden QBF-Beweisern ist, in einigen Fällen sogar bessere Resultate liefern kann. KW - Binäres Entscheidungsdiagramm KW - Erfüllbarkeitsproblem KW - DPLL KW - Zero-Suppressed Binary Decision Diagram (ZDD) KW - Formeln der quantifizierten Aussagenlogik KW - Erfüllbarkeit einer Formel der Aussagenlogik KW - ZQSA KW - DPLL KW - Zero-Suppressed Binary Decision Diagram (ZDD) KW - Quantified Boolean Formula (QBF) KW - Satisfiability KW - ZQSAT Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-6378 ER -