TY - THES A1 - Glander, Tassilo T1 - Multi-scale representations of virtual 3D city models T1 - Maßstabsabhängige Repräsentationen virtueller 3D-Stadtmodelle N2 - Virtual 3D city and landscape models are the main subject investigated in this thesis. They digitally represent urban space and have many applications in different domains, e.g., simulation, cadastral management, and city planning. Visualization is an elementary component of these applications. Photo-realistic visualization with an increasingly high degree of detail leads to fundamental problems for comprehensible visualization. A large number of highly detailed and textured objects within a virtual 3D city model may create visual noise and overload the users with information. Objects are subject to perspective foreshortening and may be occluded or not displayed in a meaningful way, as they are too small. In this thesis we present abstraction techniques that automatically process virtual 3D city and landscape models to derive abstracted representations. These have a reduced degree of detail, while essential characteristics are preserved. After introducing definitions for model, scale, and multi-scale representations, we discuss the fundamentals of map generalization as well as techniques for 3D generalization. The first presented technique is a cell-based generalization of virtual 3D city models. It creates abstract representations that have a highly reduced level of detail while maintaining essential structures, e.g., the infrastructure network, landmark buildings, and free spaces. The technique automatically partitions the input virtual 3D city model into cells based on the infrastructure network. The single building models contained in each cell are aggregated to abstracted cell blocks. Using weighted infrastructure elements, cell blocks can be computed on different hierarchical levels, storing the hierarchy relation between the cell blocks. Furthermore, we identify initial landmark buildings within a cell by comparing the properties of individual buildings with the aggregated properties of the cell. For each block, the identified landmark building models are subtracted using Boolean operations and integrated in a photo-realistic way. Finally, for the interactive 3D visualization we discuss the creation of the virtual 3D geometry and their appearance styling through colors, labeling, and transparency. We demonstrate the technique with example data sets. Additionally, we discuss applications of generalization lenses and transitions between abstract representations. The second technique is a real-time-rendering technique for geometric enhancement of landmark objects within a virtual 3D city model. Depending on the virtual camera distance, landmark objects are scaled to ensure their visibility within a specific distance interval while deforming their environment. First, in a preprocessing step a landmark hierarchy is computed, this is then used to derive distance intervals for the interactive rendering. At runtime, using the virtual camera distance, a scaling factor is computed and applied to each landmark. The scaling factor is interpolated smoothly at the interval boundaries using cubic Bézier splines. Non-landmark geometry that is near landmark objects is deformed with respect to a limited number of landmarks. We demonstrate the technique by applying it to a highly detailed virtual 3D city model and a generalized 3D city model. In addition we discuss an adaptation of the technique for non-linear projections and mobile devices. The third technique is a real-time rendering technique to create abstract 3D isocontour visualization of virtual 3D terrain models. The virtual 3D terrain model is visualized as a layered or stepped relief. The technique works without preprocessing and, as it is implemented using programmable graphics hardware, can be integrated with minimal changes into common terrain rendering techniques. Consequently, the computation is done in the rendering pipeline for each vertex, primitive, i.e., triangle, and fragment. For each vertex, the height is quantized to the nearest isovalue. For each triangle, the vertex configuration with respect to their isovalues is determined first. Using the configuration, the triangle is then subdivided. The subdivision forms a partial step geometry aligned with the triangle. For each fragment, the surface appearance is determined, e.g., depending on the surface texture, shading, and height-color-mapping. Flexible usage of the technique is demonstrated with applications from focus+context visualization, out-of-core terrain rendering, and information visualization. This thesis presents components for the creation of abstract representations of virtual 3D city and landscape models. Re-using visual language from cartography, the techniques enable users to build on their experience with maps when interpreting these representations. Simultaneously, characteristics of 3D geovirtual environments are taken into account by addressing and discussing, e.g., continuous scale, interaction, and perspective. N2 - Gegenstand der Arbeit sind virtuelle 3D-Stadt- und Landschaftsmodelle, die den städtischen Raum in digitalen Repräsentationen abbilden. Sie werden in vielfältigen Anwendungen und zu unterschiedlichen Zwecken eingesetzt. Dabei ist die Visualisierung ein elementarer Bestandteil dieser Anwendungen. Durch realitätsnahe Darstellung und hohen Detailgrad entstehen jedoch zunehmend fundamentale Probleme für eine verständliche Visualisierung. So führt beispielsweise die hohe Anzahl von detailliert ausmodellierten und texturierten Objekten eines virtuellen 3D-Stadtmodells zu Informationsüberflutung beim Betrachter. In dieser Arbeit werden Abstraktionsverfahren vorgestellt, die diese Probleme behandeln. Ziel der Verfahren ist die automatische Transformation virtueller 3D-Stadt- und Landschaftsmodelle in abstrakte Repräsentationen, die bei reduziertem Detailgrad wichtige Charakteristika erhalten. Nach der Einführung von Grundbegriffen zu Modell, Maßstab und Mehrfachrepräsentationen werden theoretische Grundlagen zur Generalisierung von Karten sowie Verfahren zur 3D-Generalisierung betrachtet. Das erste vorgestellte Verfahren beschreibt die zellbasierte Generalisierung von virtuellen 3DStadtmodellen. Es erzeugt abstrakte Repräsentationen, die drastisch im Detailgrad reduziert sind, erhält dabei jedoch die wichtigsten Strukturen, z.B. das Infrastrukturnetz, Landmarkengebäude und Freiflächen. Dazu wird in einem vollautomatischen Verfahren das Eingabestadtmodell mithilfe des Infrastrukturnetzes in Zellen zerlegt. Pro Zelle wird abstrakte Gebäudegeometrie erzeugt, indem die enthaltenen Einzelgebäude mit ihren Eigenschaften aggregiert werden. Durch Berücksichtigung gewichteter Elemente des Infrastrukturnetzes können Zellblöcke auf verschiedenen Hierarchieebenen berechnet werden. Weiterhin werden Landmarken gesondert berücksichtigt: Anhand statistischer Abweichungen der Eigenschaften der Einzelgebäudes von den aggregierten Eigenschaften der Zelle werden Gebäude gegebenenfalls als initiale Landmarken identifiziert. Schließlich werden die Landmarkengebäude aus den generalisierten Blöcken mit Booleschen Operationen ausgeschnitten und realitätsnah dargestellt. Die Ergebnisse des Verfahrens lassen sich in interaktiver 3D-Darstellung einsetzen. Das Verfahren wird beispielhaft an verschiedenen Datensätzen demonstriert und bezüglich der Erweiterbarkeit diskutiert. Das zweite vorgestellte Verfahren ist ein Echtzeit-Rendering-Verfahren für geometrische Hervorhebung von Landmarken innerhalb eines virtuellen 3D-Stadtmodells: Landmarkenmodelle werden abhängig von der virtuellen Kameradistanz vergrößert, so dass sie innerhalb eines spezifischen Entfernungsintervalls sichtbar bleiben; dabei wird ihre Umgebung deformiert. In einem Vorverarbeitungsschritt wird eine Landmarkenhierarchie bestimmt, aus der die Entfernungsintervalle für die interaktive Darstellung abgeleitet werden. Zur Laufzeit wird anhand der virtuellen Kameraentfernung je Landmarke ein dynamischer Skalierungsfaktor bestimmt, der das Landmarkenmodell auf eine sichtbare Größe skaliert. Dabei wird der Skalierungsfaktor an den Intervallgrenzen durch kubisch interpoliert. Für Nicht-Landmarkengeometrie in der Umgebung wird die Deformation bezüglich einer begrenzten Menge von Landmarken berechnet. Die Eignung des Verfahrens wird beispielhaft anhand verschiedener Datensätze demonstriert und bezüglich der Erweiterbarkeit diskutiert. Das dritte vorgestellte Verfahren ist ein Echtzeit-Rendering-Verfahren, das eine abstrakte 3D-Isokonturen-Darstellung von virtuellen 3D-Geländemodellen erzeugt. Für das Geländemodell wird eine Stufenreliefdarstellung für eine Menge von nutzergewählten Höhenwerten erzeugt. Das Verfahren arbeitet ohne Vorverarbeitung auf Basis programmierbarer Grafikkarten-Hardware. Entsprechend erfolgt die Verarbeitung in der Prozesskette pro Geometrieknoten, pro Dreieck, und pro Bildfragment. Pro Geometrieknoten wird zunächst die Höhe auf den nächstliegenden Isowert quantisiert. Pro Dreieck wird dann die Konfiguration bezüglich der Isowerte der drei Geometrieknoten bestimmt. Anhand der Konfiguration wird eine geometrische Unterteilung vorgenommen, so dass ein Stufenausschnitt entsteht, der dem aktuellen Dreieck entspricht. Pro Bildfragment wird schließlich die finale Erscheinung definiert, z.B. anhand von Oberflächentextur, durch Schattierung und Höheneinfärbung. Die vielfältigen Einsatzmöglichkeiten werden mit verschiedenen Anwendungen demonstriert. Die Arbeit stellt Bausteine für die Erzeugung abstrakter Darstellungen von virtuellen 3D-Stadt und Landschaftsmodellen vor. Durch die Orientierung an kartographischer Bildsprache können die Nutzer auf bestehende Erfahrungen bei der Interpretation zurückgreifen. Dabei werden die charakteristischen Eigenschaften 3D geovirtueller Umgebungen berücksichtigt, indem z.B. kontinuierlicher Maßstab, Interaktion und Perspektive behandelt und diskutiert werden. KW - Generalisierung KW - virtuelle 3D-Stadtmodelle KW - Gebäudemodelle KW - Landmarken KW - Geländemodelle KW - generalization KW - virtual 3D city models KW - building models KW - landmarks KW - terrain models Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-64117 ER - TY - THES A1 - Polyvyanyy, Artem T1 - Structuring process models T1 - Strukturierung von Prozessmodellen N2 - One can fairly adopt the ideas of Donald E. Knuth to conclude that process modeling is both a science and an art. Process modeling does have an aesthetic sense. Similar to composing an opera or writing a novel, process modeling is carried out by humans who undergo creative practices when engineering a process model. Therefore, the very same process can be modeled in a myriad number of ways. Once modeled, processes can be analyzed by employing scientific methods. Usually, process models are formalized as directed graphs, with nodes representing tasks and decisions, and directed arcs describing temporal constraints between the nodes. Common process definition languages, such as Business Process Model and Notation (BPMN) and Event-driven Process Chain (EPC) allow process analysts to define models with arbitrary complex topologies. The absence of structural constraints supports creativity and productivity, as there is no need to force ideas into a limited amount of available structural patterns. Nevertheless, it is often preferable that models follow certain structural rules. A well-known structural property of process models is (well-)structuredness. A process model is (well-)structured if and only if every node with multiple outgoing arcs (a split) has a corresponding node with multiple incoming arcs (a join), and vice versa, such that the set of nodes between the split and the join induces a single-entry-single-exit (SESE) region; otherwise the process model is unstructured. The motivations for well-structured process models are manifold: (i) Well-structured process models are easier to layout for visual representation as their formalizations are planar graphs. (ii) Well-structured process models are easier to comprehend by humans. (iii) Well-structured process models tend to have fewer errors than unstructured ones and it is less probable to introduce new errors when modifying a well-structured process model. (iv) Well-structured process models are better suited for analysis with many existing formal techniques applicable only for well-structured process models. (v) Well-structured process models are better suited for efficient execution and optimization, e.g., when discovering independent regions of a process model that can be executed concurrently. Consequently, there are process modeling languages that encourage well-structured modeling, e.g., Business Process Execution Language (BPEL) and ADEPT. However, the well-structured process modeling implies some limitations: (i) There exist processes that cannot be formalized as well-structured process models. (ii) There exist processes that when formalized as well-structured process models require a considerable duplication of modeling constructs. Rather than expecting well-structured modeling from start, we advocate for the absence of structural constraints when modeling. Afterwards, automated methods can suggest, upon request and whenever possible, alternative formalizations that are "better" structured, preferably well-structured. In this thesis, we study the problem of automatically transforming process models into equivalent well-structured models. The developed transformations are performed under a strong notion of behavioral equivalence which preserves concurrency. The findings are implemented in a tool, which is publicly available. N2 - Im Sinne der Ideen von Donald E. Knuth ist die Prozessmodellierung sowohl Wissenschaft als auch Kunst. Prozessmodellierung hat immer auch eine ästhetische Dimension. Wie das Komponieren einer Oper oder das Schreiben eines Romans, so stellt auch die Prozessmodellierung einen kreativen Akt eines Individuums dar. Somit kann ein Prozess auf unterschiedlichste Weise modelliert werden. Prozessmodelle können anschließend mit wissenschaftlichen Methoden untersucht werden. Prozessmodelle liegen im Regelfall als gerichtete Graphen vor. Knoten stellen Aktivitäten und Entscheidungspunkte dar, während gerichtete Kanten die temporalen Abhängigkeiten zwischen den Knoten beschreiben. Gängige Prozessmodellierungssprachen, zum Beispiel die Business Process Model and Notation (BPMN) und Ereignisgesteuerte Prozessketten (EPK), ermöglichen die Erstellung von Modellen mit einer beliebig komplexen Topologie. Es gibt keine strukturellen Einschränkungen, welche die Kreativität oder Produktivität durch eine begrenzte Anzahl von Modellierungsalternativen einschränken würden. Nichtsdestotrotz ist es oft wünschenswert, dass Modelle bestimmte strukturelle Eigenschaften haben. Ein bekanntes strukturelles Merkmal für Prozessmodelle ist Wohlstrukturiertheit. Ein Prozessmodell ist wohlstrukturiert genau dann, wenn jeder Knoten mit mehreren ausgehenden Kanten (ein Split) einen entsprechenden Knoten mit mehreren eingehenden Kanten (einen Join) hat, und umgekehrt, so dass die Knoten welche zwischen dem Split und dem Join liegen eine single-entry-single-exit (SESE) Region bilden. Ist dies nicht der Fall, so ist das Modell unstrukturiert. Wohlstrukturiertheit ist aufgrund einer Vielzahl von Gründen wünschenswert: (i) Wohlstrukturierte Modelle sind einfacher auszurichten, wenn sie visualisiert werden, da sie planaren Graphen entsprechen. (ii) Wohlstrukturierte Modelle zeichnen sich durch eine höhere Verständlichkeit aus. (iii) Wohlstrukturierte Modelle haben oft weniger Fehler als unstrukturierte Modelle. Auch ist die Wahrscheinlichkeit fehlerhafter Änderungen größer, wenn Modelle unstrukturiert sind. (iv) Wohlstrukturierte Modelle eignen sich besser für die formale Analyse, da viele Techniken nur für wohlstrukturierte Modelle anwendbar sind. (v) Wohlstrukturierte Modelle sind eher für die effiziente Ausführung und Optimierung geeignet, z.B. wenn unabhängige Regionen eines Prozesses für die parallele Ausführung identifiziert werden. Folglich gibt es eine Reihe von Prozessmodellierungssprachen, z.B. die Business Process Execution Language (BPEL) und ADEPT, welche den Modellierer anhalten nur wohlstrukturierte Modelle zu erstellen. Solch wohlstrukturiertes Modellieren impliziert jedoch gewisse Einschränkungen: (i) Es gibt Prozesse, welche nicht mittels wohlstrukturierten Prozessmodellen dargestellt werden können. (ii) Es gibt Prozesse, für welche die wohlstrukturierte Modellierung mit einer erheblichen Vervielfältigung von Modellierungs-konstrukten einhergeht. Aus diesem Grund vertritt diese Arbeit den Standpunkt, dass ohne strukturelle Einschränkungen modelliert werden sollte, anstatt Wohlstrukturiertheit von Beginn an zu verlangen. Anschließend können, sofern gewünscht und wo immer es möglich ist, automatische Methoden Modellierungsalternativen vorschlagen, welche "besser" strukturiert sind, im Idealfall sogar wohlstrukturiert. Die vorliegende Arbeit widmet sich dem Problem der automatischen Transformation von Prozessmodellen in verhaltensäquivalente wohlstrukturierte Prozessmodelle. Die vorgestellten Transformationen erhalten ein strenges Verhaltensequivalenzkriterium, welches die Parallelität wahrt. Die Resultate sind in einem frei verfügbaren Forschungsprototyp implementiert worden. KW - Strukturierung KW - Wohlstrukturiertheit KW - Prozesse KW - Verhalten KW - Modellierung KW - Structuring KW - Well-structuredness KW - Process KW - Behavior KW - Modeling Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59024 ER - TY - THES A1 - Seibel, Andreas T1 - Traceability and model management with executable and dynamic hierarchical megamodels T1 - Traceability und Modell Management mit ausführbaren und dynamischen Megamodellen N2 - Nowadays, model-driven engineering (MDE) promises to ease software development by decreasing the inherent complexity of classical software development. In order to deliver on this promise, MDE increases the level of abstraction and automation, through a consideration of domain-specific models (DSMs) and model operations (e.g. model transformations or code generations). DSMs conform to domain-specific modeling languages (DSMLs), which increase the level of abstraction, and model operations are first-class entities of software development because they increase the level of automation. Nevertheless, MDE has to deal with at least two new dimensions of complexity, which are basically caused by the increased linguistic and technological heterogeneity. The first dimension of complexity is setting up an MDE environment, an activity comprised of the implementation or selection of DSMLs and model operations. Setting up an MDE environment is both time-consuming and error-prone because of the implementation or adaptation of model operations. The second dimension of complexity is concerned with applying MDE for actual software development. Applying MDE is challenging because a collection of DSMs, which conform to potentially heterogeneous DSMLs, are required to completely specify a complex software system. A single DSML can only be used to describe a specific aspect of a software system at a certain level of abstraction and from a certain perspective. Additionally, DSMs are usually not independent but instead have inherent interdependencies, reflecting (partial) similar aspects of a software system at different levels of abstraction or from different perspectives. A subset of these dependencies are applications of various model operations, which are necessary to keep the degree of automation high. This becomes even worse when addressing the first dimension of complexity. Due to continuous changes, all kinds of dependencies, including the applications of model operations, must also be managed continuously. This comprises maintaining the existence of these dependencies and the appropriate (re-)application of model operations. The contribution of this thesis is an approach that combines traceability and model management to address the aforementioned challenges of configuring and applying MDE for software development. The approach is considered as a traceability approach because it supports capturing and automatically maintaining dependencies between DSMs. The approach is considered as a model management approach because it supports managing the automated (re-)application of heterogeneous model operations. In addition, the approach is considered as a comprehensive model management. Since the decomposition of model operations is encouraged to alleviate the first dimension of complexity, the subsequent composition of model operations is required to counteract their fragmentation. A significant portion of this thesis concerns itself with providing a method for the specification of decoupled yet still highly cohesive complex compositions of heterogeneous model operations. The approach supports two different kinds of compositions - data-flow compositions and context compositions. Data-flow composition is used to define a network of heterogeneous model operations coupled by sharing input and output DSMs alone. Context composition is related to a concept used in declarative model transformation approaches to compose individual model transformation rules (units) at any level of detail. In this thesis, context composition provides the ability to use a collection of dependencies as context for the composition of other dependencies, including model operations. In addition, the actual implementation of model operations, which are going to be composed, do not need to implement any composition concerns. The approach is realized by means of a formalism called an executable and dynamic hierarchical megamodel, based on the original idea of megamodels. This formalism supports specifying compositions of dependencies (traceability and model operations). On top of this formalism, traceability is realized by means of a localization concept, and model management by means of an execution concept. N2 - Die modellgetriebene Softwareentwicklung (MDE) verspricht heutzutage, durch das Verringern der inhärenten Komplexität der klassischen Softwareentwicklung, das Entwickeln von Software zu vereinfachen. Um dies zu erreichen, erhöht MDE das Abstraktions- und Automationsniveau durch die Einbindung domänenspezifischer Modelle (DSMs) und Modelloperationen (z.B. Modelltransformationen oder Codegenerierungen). DSMs sind konform zu domänenspezifischen Modellierungssprachen (DSMLs), die dazu dienen das Abstraktionsniveau der Softwareentwicklung zu erhöhen. Modelloperationen sind essentiell für die Softwareentwicklung da diese den Grad der Automatisierung erhöhen. Dennoch muss MDE mit Komplexitätsdimensionen umgehen die sich grundsätzlich aus der erhöhten sprachlichen und technologischen Heterogenität ergeben. Die erste Komplexitätsdimension ist das Konfigurieren einer Umgebung für MDE. Diese Aktivität setzt sich aus der Implementierung und Selektion von DSMLs sowie Modelloperationen zusammen. Eine solche Aktivität ist gerade durch die Implementierung und Anpassung von Modelloperationen zeitintensiv sowie fehleranfällig. Die zweite Komplexitätsdimension hängt mit der Anwendung von MDE für die eigentliche Softwareentwicklung zusammen. Das Anwenden von MDE ist eine Herausforderung weil eine Menge von heterogenen DSMs, die unterschiedlichen DSMLs unterliegen, erforderlich sind um ein komplexes Softwaresystem zu spezifizieren. Individuelle DSMLs werden verwendet um spezifische Aspekte eines Softwaresystems auf bestimmten Abstraktionsniveaus und aus bestimmten Perspektiven zu beschreiben. Hinzu kommt, dass DSMs sowie DSMLs grundsätzlich nicht unabhängig sind, sondern inhärente Abhängigkeiten besitzen. Diese Abhängigkeiten reflektieren äquivalente Aspekte eines Softwaresystems. Eine Teilmenge dieser Abhängigkeiten reflektieren Anwendungen diverser Modelloperationen, die notwendig sind um den Grad der Automatisierung hoch zu halten. Dies wird erschwert wenn man die erste Komplexitätsdimension hinzuzieht. Aufgrund kontinuierlicher Änderungen der DSMs, müssen alle Arten von Abhängigkeiten, inklusive die Anwendung von Modelloperationen, kontinuierlich verwaltet werden. Dies beinhaltet die Wartung dieser Abhängigkeiten und das sachgerechte (wiederholte) Anwenden von Modelloperationen. Der Beitrag dieser Arbeit ist ein Ansatz, der die Bereiche Traceability und Model Management vereint. Das Erfassen und die automatische Verwaltung von Abhängigkeiten zwischen DSMs unterstützt Traceability, während das (automatische) wiederholte Anwenden von heterogenen Modelloperationen Model Management ermöglicht. Dadurch werden die zuvor erwähnten Herausforderungen der Konfiguration und Anwendung von MDE überwunden. Die negativen Auswirkungen der ersten Komplexitätsdimension können gelindert werden indem Modelloperationen in atomare Einheiten zerlegt werden. Um der implizierten Fragmentierung entgegenzuwirken, erfordert dies allerdings eine nachfolgende Komposition der Modelloperationen. Der Ansatz wird als erweitertes Model Management betrachtet, da ein signifikanter Anteil dieser Arbeit die Kompositionen von heterogenen Modelloperationen behandelt. Unterstützt werden zwei unterschiedliche Arten von Kompositionen. Datenfluss-Kompositionen werden verwendet, um Netzwerke von heterogenen Modelloperationen zu beschreiben, die nur durch das Teilen von Ein- und Ausgabe DSMs komponiert werden. Kontext-Kompositionen bedienen sich eines Konzepts, das von deklarativen Modelltransformationen bekannt ist. Dies ermöglicht die Komposition von unabhängigen Transformationsregeln auf unterschiedlichsten Detailebenen. Die in dieser Arbeit eingeführten Kontext-Kompositionen bieten die Möglichkeit eine Menge von unterschiedlichsten Abhängigkeiten als Kontext für eine Komposition zu verwenden -- unabhängig davon ob diese Abhängigkeit eine Modelloperation repräsentiert. Zusätzlich müssen die Modelloperationen, die komponiert werden, selber keine Kompositionsaspekte implementieren, was deren Wiederverwendbarkeit erhöht. Realisiert wird dieser Ansatz durch einen Formalismus der Executable and Dynamic Hierarchical Megamodel genannt wird und auf der originalen Idee der Megamodelle basiert. Auf Basis dieses Formalismus' sind die Konzepte Traceability (hier Localization) und Model Management (hier Execution) umgesetzt. KW - Traceability KW - Modell Management KW - Megamodell KW - Modellgetriebene Entwicklung KW - Komposition KW - Traceability KW - Model Management KW - Megamodel KW - Model-Driven Engineering KW - Composition Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-64222 ER -