TY - JOUR A1 - Kreowsky, Philipp A1 - Stabernack, Christian Benno T1 - A full-featured FPGA-based pipelined architecture for SIFT extraction JF - IEEE access : practical research, open solutions / Institute of Electrical and Electronics Engineers N2 - Image feature detection is a key task in computer vision. Scale Invariant Feature Transform (SIFT) is a prevalent and well known algorithm for robust feature detection. However, it is computationally demanding and software implementations are not applicable for real-time performance. In this paper, a versatile and pipelined hardware implementation is proposed, that is capable of computing keypoints and rotation invariant descriptors on-chip. All computations are performed in single precision floating-point format which makes it possible to implement the original algorithm with little alteration. Various rotation resolutions and filter kernel sizes are supported for images of any resolution up to ultra-high definition. For full high definition images, 84 fps can be processed. Ultra high definition images can be processed at 21 fps. KW - Field programmable gate arrays KW - Convolution KW - Signal processing KW - algorithms KW - Kernel KW - Image resolution KW - Histograms KW - Feature extraction KW - Scale-invariant feature transform (SIFT) KW - field-programmable gate array KW - (FPGA) KW - image processing KW - computer vision KW - parallel processing KW - architecture KW - real-time KW - hardware architecture Y1 - 2021 U6 - https://doi.org/10.1109/ACCESS.2021.3104387 SN - 2169-3536 VL - 9 SP - 128564 EP - 128573 PB - Inst. of Electr. and Electronics Engineers CY - New York, NY ER -