TY - GEN A1 - Ebert, Birgitta E. A1 - Lamprecht, Anna-Lena A1 - Steffen, Bernhard A1 - Blank, Lars M. T1 - Flux-P BT - automating metabolic flux analysis T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1054 KW - 13C metabolic flux analysis KW - MFA KW - high-throughput analysis KW - scientific workflows KW - workflow management KW - Bio-jETI Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476696 SN - 1866-8372 IS - 1054 SP - 872 EP - 890 ER - TY - GEN A1 - Lamprecht, Anna-Lena A1 - Margaria, Tiziana A1 - Steffen, Bernhard T1 - Bio-jETI : a framework for semantics-based service composition N2 - Background: The development of bioinformatics databases, algorithms, and tools throughout the last years has lead to a highly distributedworld of bioinformatics services. Without adequatemanagement and development support, in silico researchers are hardly able to exploit the potential of building complex, specialized analysis processes from these services. The Semantic Web aims at thoroughly equipping individual data and services with machine-processable meta-information, while workflow systems support the construction of service compositions. However, even in this combination, in silico researchers currently would have to deal manually with the service interfaces, the adequacy of the semantic annotations, type incompatibilities, and the consistency of service compositions. Results: In this paper, we demonstrate by means of two examples how Semantic Web technology together with an adequate domain modelling frees in silico researchers from dealing with interfaces, types, and inconsistencies. In Bio-jETI, bioinformatics services can be graphically combined to complex services without worrying about details of their interfaces or about type mismatches of the composition. These issues are taken care of at the semantic level by Bio-jETI’s model checking and synthesis features. Whenever possible, they automatically resolve type mismatches in the considered service setting. Otherwise, they graphically indicate impossible/incorrect service combinations. In the latter case, the workflow developermay either modify his service composition using semantically similar services, or ask for help in developing the missing mediator that correctly bridges the detected type gap. Newly developed mediators should then be adequately annotated semantically, and added to the service library for later reuse in similar situations. Conclusion: We show the power of semantic annotations in an adequately modelled and semantically enabled domain setting. Using model checking and synthesis methods, users may orchestrate complex processes from a wealth of heterogeneous services without worrying about interfaces and (type) consistency. The success of this method strongly depends on a careful semantic annotation of the provided services and on its consequent exploitation for analysis, validation, and synthesis. We are convinced that these annotations will become standard, as they will become preconditions for the success and widespread use of (preferred) services in the Semantic Web T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 136 KW - European Bioinformatics Institute KW - Integration KW - Tool KW - Alignment KW - Workflow Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45066 ER -